References of "Van Melckebeke, H"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailConformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light an regulation mechanisms of bacterial resistance against beta-lactam antibiotics
Boudet, J.; Duval, V.; Van Melckebeke, H. et al

in Nucleic Acids Research (2007), 35(13), 4384-4395

In absence of beta-lactam antibiotics, Blal and Mecl homodimeric repressors negatively control the expression of genes involved in P-lactam resistance in Bacillus licheniformis and in Staphylococcus ... [more ▼]

In absence of beta-lactam antibiotics, Blal and Mecl homodimeric repressors negatively control the expression of genes involved in P-lactam resistance in Bacillus licheniformis and in Staphylococcus aureus. Subsequently to P-lactam presence, Blal/Mecl is inactivated by a single-point proteolysis that separates its N-terminal DNA-binding domain to its C-terminal domain responsible for its dimerization. Concomitantly to this proteolysis, the truncated repressor acquires a low affinity for its DNA target that explains the expression of the structural gene for resistance. To understand the loss of the high DNA affinity of the truncated repressor, we have determined the different dissociation constants of the system and solved the solution structure of the B. licheniformis monomeric repressor complexed to the semi-operating sequence OP1, of blaP (1/20P(1)blaP) by using a de novo docking approach based on inter-molecular nuclear Overhauser effects and chemical-shift differences measured on each macromolecular partner. Although the N-terminal domain of the repressor is not subject to internal structural rearrangements upon DNA binding, the molecules adopt a tertiary conformation different from the crystallographic operator-repressor dimer complex, leading to a 300 rotation of the monomer with respect to a central axis extended across the DNA. These results open new insights for the repression and induction mechanisms of bacterial resistance to beta-lactams. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailGuanidinium chloride denaturation of the dimeric Bacillus licheniformis Blal repressor highlights an independent domain unfolding pathway
Vreuls, Christelle ULg; Filée, Patrice ULg; Van Melckebeke, H. et al

in Biochemical Journal (2004), 384(Pt 1), 179-190

The Bacillus licheniformis 74911 BlaI repressor is a prokaryotic regulator that, in the absence of a P-lactam antibiotic, prevents the transcription of the blaP gene, which encodes the BlaP beta-lactamase ... [more ▼]

The Bacillus licheniformis 74911 BlaI repressor is a prokaryotic regulator that, in the absence of a P-lactam antibiotic, prevents the transcription of the blaP gene, which encodes the BlaP beta-lactamase. The BlaI repressor is composed of two structural domains. The 82-residue NTD (N-terminal domain) is a DNA-binding domain, and the CTD (C-terminal domain) containing the next 46 residues is a dimerization domain. Recent studies have shown the existence of the monomeric, dimeric and tetrameric forms of BlaI in solution. In the present study, we analyse the equilibrium unfolding of BlaI in the presence of GdmCl (guanidinium chloride) using different techniques: intrinsic and ANS (8-anilinonaphthalene-1-sulphonic acid) fluorescence, far- and near-UV CD spectroscopy, cross-linking, analytical ultracentrifugation, size exclusion chromatography and NMR spectroscopy. In addition, the intact NTD and CTD were purified after proteolysis of BlaI by papain, and their unfolding by GdmCl was also studied. GdmCl-induced equilibrium unfolding was shown to be fully reversible for BlaI and for the two isolated fragments. The results demonstrate that the NTD and CTD of BlaI fold/unfold independently in a four-step process, with no significant cooperative interactions between them. During the first step, the unfolding of the Blal CTD occurs, followed in the second step by the formation of an 'ANS-bound' intermediate state. Crosslinking and analytical ultracentrifugation experiments suggest that the dissociation of the dimer into two partially unfolded monomers takes place in the third step. Finally, the unfolding of the Blal NTD occurs at a GdmCI concentration of approx. 4 M. In summary, it is shown that the Blal CTD is structured, more flexible and less stable than the NTD upon GdmCI denaturation. These results contribute to the characterization of the Blal dimerization domain (i.e. CTD) involved in the induction process. [less ▲]

Detailed reference viewed: 53 (6 ULg)
Full Text
Peer Reviewed
See detailSolution structural study of BlaI: Implications for the repression of genes involved in beta-lactam antibiotic resistance
Van Melckebeke, H.; Vreuls, Christelle ULg; Gans, P. et al

in Journal of Molecular Biology (2003), 333(4), 711-720

Detailed reference viewed: 15 (5 ULg)