References of "Van Audekerke, J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExploring sex differences in the adult zebra finch brain: in vivo diffusion tensor imaging and ex vivo super-resolution track density imaging
Hamaide, J.; De Groof, G.; Van Steenkiste, G. et al

in NeuroImage (in press)

Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural ... [more ▼]

Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas-quality anatomical maps that enable a clear delineation of most components of the song control and auditory systems. In conclusion, this study paves the way for longitudinal in vivo and high-resolution ex vivo experiments aimed at disentangling [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailSpatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks
Van Meir, V.; Boumans, T.; De Groof, G. et al

in Neuroimage (2005), 25(4), 1242-1255

Auditory fMRI in humans has recently received increasing attention from cognitive neuroscientists as a tool to understand mental processing of learned acoustic sequences and analyzing speech recognition ... [more ▼]

Auditory fMRI in humans has recently received increasing attention from cognitive neuroscientists as a tool to understand mental processing of learned acoustic sequences and analyzing speech recognition and development of musical skills. The present study introduces this tool in a well-documented animal model for vocal learning, the songbird, and provides fundamental insight in the main technical issues associated with auditory fMRI in these songbirds. Stimulation protocols with various listening tasks lead to appropriate activation of successive relays in the songbirds' auditory pathway. The elicited BOLD response is also region and stimulus specific, and its temporal aspects provide accurate measures of the changes in brain physiology induced by the acoustic stimuli. Extensive repetition of an identical stimulus does not lead to habituation of the response in the primary or secondary telencephalic auditory regions of anesthetized subjects. The BOLD signal intensity changes during a stimulation and subsequent rest period have a very specific time course which shows a remarkable resemblance to auditory evoked BOLD responses commonly observed in human subjects. This observation indicates that auditory fMRI in the songbird may establish a link between auditory related neuro-imaging studies done in humans and the large body of neuro-ethological research on song learning and neuro-plasticity performed in songbirds. © 2005 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 19 (1 ULg)