References of "Uversky, V. N"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAdenylation-dependent conformation and unfolding pathways of the NAD(+)-dependent DNA ligase from the thermophile Thermus scotoductus
Georlette, D.; Blaise, Vinciane ULg; Bouillenne, Fabrice ULg et al

in Biophysical Journal (2004), 86(2), 1089-1104

In the last few years, an increased attention has been focused on NAD(+)-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these ... [more ▼]

In the last few years, an increased attention has been focused on NAD(+)-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD(+)-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD(+)-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced "open-closure" process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates. [less ▲]

Detailed reference viewed: 19 (2 ULg)
Full Text
Peer Reviewed
See detailCofactor binding modulates the conformational stabilities and unfolding patterns of NAD(+)-dependent DNA ligases from Escherichia coli and Thermus scotoductus
Georlette, D.; Blaise, Vinciane ULg; Dohmen, C. et al

in Journal of Biological Chemistry (2003), 278(50), 49945-49953

DNA ligases are important enzymes required for cellular processes such as DNA replication, recombination, and repair. NAD(+)-dependent DNA ligases are essentially restricted to eubacteria, thus ... [more ▼]

DNA ligases are important enzymes required for cellular processes such as DNA replication, recombination, and repair. NAD(+)-dependent DNA ligases are essentially restricted to eubacteria, thus constituting an attractive target in the development of novel antibiotics. Although such a project might involve the systematic testing of a vast number of chemical compounds, it can essentially gain from the preliminary deciphering of the conformational stability and structural perturbations associated with the formation of the catalytically active adenylated enzyme. We have, therefore, investigated the adenylation-induced conformational changes in the mesophilic Escherichia coli and thermophilic Thermus scotoductus NAD(+)-DNA ligases, and the resistance of these enzymes to thermal and chemical (guanidine hydrochloride) denaturation. Our results clearly demonstrate that anchoring of the cofactor induces a conformational rearrangement within the active site of both mesophilic and thermophilic enzymes accompanied by their partial compaction. Furthermore, the adenylation of enzymes increases their resistance to thermal and chemical denaturation, establishing a thermodynamic link between cofactor binding and conformational stability enhancement. Finally, guanidine hydrochloride-induced unfolding of NAD(+)-dependent DNA ligases is shown to be a complex process that involves accumulation of at least two equilibrium intermediates, the molten globule and its precursor. [less ▲]

Detailed reference viewed: 10 (2 ULg)
Full Text
Peer Reviewed
See detailStructural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases
Georlette, D.; Damien, B.; Blaise, Vinciane ULg et al

in Journal of Biological Chemistry (2003), 278(39), 37015-37023

Psychrophiles, host of permanently cold habitats, display metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. These organisms have evolved by producing, among ... [more ▼]

Psychrophiles, host of permanently cold habitats, display metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. These organisms have evolved by producing, among other peculiarities, cold-active enzymes that have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. The emerging picture suggests that these enzymes display a high catalytic efficiency at low temperatures through an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. In return, the increased flexibility leads to a decreased stability of psychrophilic enzymes. In order to gain further advances in the analysis of the activity/flexibility/stability concept, psychrophilic, mesophilic, and thermophilic DNA ligases have been compared by three-dimensional-modeling studies, as well as regards their activity, surface hydrophobicity, structural permeability, conformational stabilities, and irreversible thermal unfolding. These data show that the cold-adapted DNA ligase is characterized by an increased activity at low and moderate temperatures, an overall destabilization of the molecular edifice, especially at the active site, and a high conformational flexibility. The opposite trend is observed in the mesophilic and thermophilic counterparts, the latter being characterized by a reduced low temperature activity, high stability and reduced flexibility. These results strongly suggest a complex relationship between activity, flexibility and stability. In addition, they also indicate that in cold-adapted enzymes, the driving force for denaturation is a large entropy change. [less ▲]

Detailed reference viewed: 17 (0 ULg)