References of "Triaud, A. H. M. J"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars
Delrez, Laetitia ULg; Van Grootel, Valérie ULg; Anderson, D. R. et al

in Astronomy and Astrophysics (2014)

We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V ... [more ▼]

We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 \rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. WASP-73 appears to be a significantly evolved star, close to or already in the subgiant phase. WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. [less ▲]

Detailed reference viewed: 14 (4 ULg)
Full Text
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

E-print/Working paper (2014)

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R_{\rm Jup}$) in a 4.9-day, near-aligned ($\lambda = 8.1 \pm 3.6^\circ$) orbit around CD-24 102 ($V$=10.7; F9). WASP-28b is an inflated, Jupiter-mass planet (0.91 $M_{\rm Jup}$; 1.21 $R_{\rm Jup}$) in a 3.4-day, near-aligned ($\lambda = 8 \pm 18^\circ$) orbit around a $V$=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars ($7^{+2}_{-1}$ Gyr for WASP-20 and $5^{+3}_{-2}$ Gyr for WASP-28; both with $T_{\rm eff}$ < 6250 K), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-103b: a new planet at the edge of tidal disruption
Gillon, Michaël ULg; Anderson, D. R.; Collier-Cameron, A. et al

in Astronomy and Astrophysics (2014)

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP ... [more ▼]

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP-103b is significantly more massive (1.49+-0.09 Mjup) and larger (1.53-0.07+0.05 Rjup) than Jupiter. Its large size and extreme irradiation (around 9 10^9 erg/s/cm^2) make it an exquisite target for a thorough atmospheric characterization with existing facilities. Furthermore, its orbital distance is less than 20% larger than its Roche radius, meaning that it might be significantly distorted by tides and might experience mass loss through Roche-lobe overflow. It thus represents a new key object for understanding the last stage of the tidal evolution of hot Jupiters. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
See detailA Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability
Burgasser, A. J.; Gillon, Michaël ULg; Faherty, J. K. et al

E-print/Working paper (2014)

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-71b: a bloated hot Jupiter in an 2.9-day, prograde orbit around an evolved F8 star
Smith, A. M. S.; Anderson, D. R.; Bouchy, F. et al

in Astronomy and Astrophysics (2013), 552

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b ... [more ▼]

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b, is larger than Jupiter (1.46 +/- 0.13 RJup), but less dense (0.71 +/- 0.16 {\rho}Jup). We also report spectroscopic observations made during transit with the CORALIE spectrograph, which allow us to make a highly-significant detection of the Rossiter-McLaughlin effect. We determine the sky-projected angle between the stellar-spin and planetary-orbit axes to be {\lambda} = 20.1 +/- 9.7 degrees, i.e. the system is 'aligned', according to the widely-used alignment criteria that systems are regarded as misaligned only when {\lambda} is measured to be greater than 10 degrees with 3-{\sigma} confidence. WASP-71, with an effective temperature of 6059 +/- 98 K, therefore fits the previously observed pattern that only stars hotter than 6250 K are host to planets in misaligned orbits. We emphasise, however, that {\lambda} is merely the sky-projected obliquity angle; we are unable to determine whether the stellar-spin and planetary-orbit axes are misaligned along the line-of-sight. With a mass of 1.56 +/- 0.07 Msun, WASP-71 was previously hotter than 6250 K, and therefore might have been significantly misaligned in the past. If so, the planetary orbit has been realigned, presumably through tidal interactions with the cooling star's growing convective zone. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
See detailThree irradiated and bloated hot Jupiters: WASP-76b, WASP-82b & WASP-90b
West, R. G.; Almenara, J.-M.; Anderson, D. R. et al

E-print/Working paper (2013)

We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three ... [more ▼]

We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three planets are inflated, with radii 1.7-1.8 Rjup. All orbit hot stars, F5-F7, and all three stars have evolved, post-MS radii (1.7-2.2 Rsun). Thus the three planets, with orbits of 1.8-3.9 d, are among the most irradiated planets known. This reinforces the correlation between inflated planets and stellar irradiation. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailTransiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

E-print/Working paper (2013)

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1 to 5.7 d, masses ... [more ▼]

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1 to 5.7 d, masses of 0.5 to 2.8 Mjup, and radii of 1.1 to 1.4 Rjup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b shows the shallowest transit yet found by WASP-South, at 0.4%. The host stars are of spectral type F2 to G8. Five have metallicities of [Fe/H] from -0.03 to +0.23, while WASP-98 has a metallicity of -0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HAT project. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
See detailThree sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary
Anderson, D. R.; Collier Cameron, A.; Delrez, Laetitia ULg et al

E-print/Working paper (2013)

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\rm Jup}$, 1.06 R$_{\rm ... [more ▼]

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\rm Jup}$, 1.06 R$_{\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\rm Jup}$, 1.16R$_{\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\geq$800 AU). We exploit the binary nature of the system to construct a H-R diagram, from which we estimate its age to be 9-10 Gyr. WASP-84b is a sub-Jupiter-mass planet (0.69 M$_{\rm Jup}$, 0.94 R$_{\rm Jup}$) in an 8.523-d orbit around an active early-K dwarf. Of the transiting planets discovered from the ground to date, WASP-84b has the third-longest period. From a combination of gyrochronological and age-activity relations we estimate the age of WASP-84 to be ~1 Gyr. For both the active stars WASP-69 and WASP-84 we find a modulation of the radial velocities with a period similar to the photometrically-determined stellar rotation period. We fit the residuals with a low-order harmonic series and subtract the best fit from the RVs prior to deriving the system parameters. In each case the solution is essentially unchanged, with much less than a 1-{\sigma} change to the planetary mass. We found... [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
Peer Reviewed
See detailFast-evolving weather for the coolest of our two new substellar neighbours
Gillon, Michaël ULg; Triaud, A. H. M. J.; Jehin, Emmanuel ULg et al

in Astronomy and Astrophysics (2013), 555

We present the results of an intense photometric monitoring in the near-infrared (~0.9 microns) with the TRAPPIST robotic telescope of the newly discovered binary brown dwarf WISE J104915.57-531906.1, the ... [more ▼]

We present the results of an intense photometric monitoring in the near-infrared (~0.9 microns) with the TRAPPIST robotic telescope of the newly discovered binary brown dwarf WISE J104915.57-531906.1, the third closest system to the Sun at a distance of only 2 pc. Our twelve nights of photometric time-series reveal a quasi-periodic (P = 4.87+-0.01 h) variability with a maximal peak-peak amplitude of ~11% and strong night-to-night evolution. We attribute this variability to the rotational modulation of fast-evolving weather patterns in the atmosphere of the coolest component (~T1-type) of the binary. No periodic signal is detected for the hottest component (~L8-type). For both brown dwarfs, our data allow us to firmly discard any unique transit during our observations for planets >= 2 Rearth. For orbital periods smaller than ~9.5 h, transiting planets are excluded down to an Earth-size. [less ▲]

Detailed reference viewed: 14 (7 ULg)
Full Text
See detailDiscovery of WASP-65b and WASP-75b: Two Hot Jupiters Without Highly Inflated Radii
Gómez Maqueo Chew, Y.; Faedi, F.; Pollacco, D. et al

E-print/Working paper (2013)

We report the discovery of two transiting hot Jupiters, WASP-65b (M_pl = 1.55 +/- 0.16 M_J; R_pl = 1.11 +/- 0.06 R_J), and WASP-75b (M_pl = 1.07 +/- 0.05 M_J; R_pl = 1.27 +/- 0.05 R_J). They orbit their ... [more ▼]

We report the discovery of two transiting hot Jupiters, WASP-65b (M_pl = 1.55 +/- 0.16 M_J; R_pl = 1.11 +/- 0.06 R_J), and WASP-75b (M_pl = 1.07 +/- 0.05 M_J; R_pl = 1.27 +/- 0.05 R_J). They orbit their host star every 2.311, and 2.484 days, respectively. The planet host WASP-65 is a G6 star (T_eff = 5600 K, [Fe/H] = -0.07 +/- 0.07, age > 8 Gyr); WASP-75 is an F9 star (T_eff = 6100 K, [Fe/H] = 0.07 +/- 0.09, age of 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 M_J (rho_pl = 1.13 +/- 0.08 rho_J), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of around 1.5 M_J, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of Jupiter-mass WASP-75b is slightly inflated (< 10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (rho_pl = 0.52 +/- 0.06 rho_J). [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
See detailSearch for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214
Gillon, Michaël ULg; Demory, B.-O.; Madhusudhan, N. et al

E-print/Working paper (2013)

High-precision eclipse spectrophotometry of transiting terrestrial exoplanets represents a promising path for the first atmospheric characterizations of habitable worlds and the search for life outside ... [more ▼]

High-precision eclipse spectrophotometry of transiting terrestrial exoplanets represents a promising path for the first atmospheric characterizations of habitable worlds and the search for life outside our solar system. The detection of terrestrial planets transiting nearby late-type M-dwarfs could make this approach applicable within the next decade, with near-to-come general facilities. In this context, we previously identified GJ 1214 as a high-priority target for a transit search, as the transit probability of a habitable planet orbiting this nearby M4.5 dwarf would be significantly enhanced by the transiting nature of GJ 1214 b, the super-Earth already known to orbit the star. Basing on this observation, we have set-up an ambitious high-precision photometric monitoring of GJ 1214 with the Spitzer Space Telescope to probe its entire habitable zone in search of a transiting planet as small as Mars. We present here the results of this transit search. Unfortunately, we did not detect any second transiting planet. Assuming GJ 1214 hosts a habitable planet larger than Mars, our global analysis of the whole Spitzer dataset leads to a posterior no-transit probability >=97%. Our analysis allows us to significantly improve the characterization of GJ 1214 b, to measure its occultation depth to be 70+-35 ppm at 4.5 microns, and to constrain it to be smaller than 205ppm (3-sigma upper limit) at 3.6 microns. In agreement with the plethora of transmission measurements published so far for GJ 1214 b, these emission measurements are consistent with both a metal-rich and a cloudy hydrogen-rich atmosphere. [less ▲]

Detailed reference viewed: 15 (2 ULg)
Full Text
Peer Reviewed
See detailWarm Spitzer Occultation Photometry of WASP-26b at 3.6{\mu}m and 4.5{\mu}m
Mahtani, D. P.; Maxted, P. F. L.; Anderson, D. R. et al

in Monthly Notices of the Royal Astronomical Society (2013), 432(1), 693-701

We present new warm Spitzer occultation photometry of WASP-26 at 3.6{\mu}m and 4.5{\mu}m along with new transit photometry taken in the g,r and i bands. We report the first detection of the occultation of ... [more ▼]

We present new warm Spitzer occultation photometry of WASP-26 at 3.6{\mu}m and 4.5{\mu}m along with new transit photometry taken in the g,r and i bands. We report the first detection of the occultation of WASP-26b, with occultation depths at 3.6{\mu}m and 4.5{\mu}m of 0.00126 +/- 0.00013 and 0.00149 +/- 0.00016 corresponding to brightness temperatures of 1825+/-80K and 1725+/-89K, respectively. We find that the eccentricity of the orbit is consistent with a circular orbit at the 1{\sigma} level with a 3{\sigma} upper limit of e < 0.04. According to the activity-inversion relation of Knutson et al. (2010), WASP-26b is predicted to host a thermal inversion. The brightness temperatures deduced from the eclipse depths are consistent with an isothermal atmosphere, although it is within the uncertainties that the planet may host a weak thermal inversion. The data are equally well fit by atmospheric models with or without a thermal inversion. We find that variation in activity of solar-like stars does not change enough over the time-scales of months or years to change the interpretation of the Knutson et al. (2010) activity-inversion relation, provided that the measured activity level is averaged over several nights. Further data are required to fully constrain the thermal structure of the atmosphere because the planet lies very close to the boundary between atmospheres with and without a thermal inversion. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailThermal emission at 3.6-8 micron from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star
Anderson, D. R.; Smith, A. M. S.; Madhusudhan, N. et al

in Monthly Notices of the Royal Astronomical Society (2013), 430(4), 3422-3431

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by ... [more ▼]

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by its host star. We combine our new detections with previous measurements of WASP-19b's emission at 1.6 and 2.09 μm to construct a spectral energy distribution of the planet's dayside atmosphere. By comparing this with model-atmosphere spectra, we find that the dayside atmosphere of WASP-19b lacks a strong temperature inversion. As WASP-19 is an active star (log R'HK = -4.50 ± 0.03), this finding supports the hypothesis of Knutson, Howard and Isaacson that inversions are suppressed in hot Jupiters orbiting active stars. The available data are unable to differentiate between a carbon-rich and an oxygen-rich atmosphere. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-64b and WASP-72b: two new transiting highly irradiated giant planets
Gillon, Michaël ULg; Anderson, D. R.; Collier-Cameron, A. et al

in Astronomy and Astrophysics (2013), 552

We report the discovery by the WASP transit survey of two new highly irradiated giant planets. WASP-64 b is slightly more massive (1.271 ± 0.068 MJup) and larger (1.271 ± 0.039 RJup) than Jupiter, and is ... [more ▼]

We report the discovery by the WASP transit survey of two new highly irradiated giant planets. WASP-64 b is slightly more massive (1.271 ± 0.068 MJup) and larger (1.271 ± 0.039 RJup) than Jupiter, and is in very-short (a = 0.02648 ± 0.00024 AU, P = 1.5732918 ± 0.0000015 days) circular orbit around a V = 12.3 G7-type dwarf (1.004 ± 0.028 Msun, 1.058 ± 0.025 Rsun, Teff = 5500 ± 150 K). Its size is typical of hot Jupiters with similar masses. WASP-72 b has also a mass a bit higher than Jupiter's (1.461-0.056+0.059 MJup) and orbits very close (0.03708 ± 0.00050 AU, P = 2.2167421 ± 0.0000081 days) to a bright (V = 9.6) and moderately evolved F7-type star (1.386 ± 0.055 Msun, 1.98 ± 0.24 Rsun, Teff = 6250 ± 100 K). Despite its extreme irradiation (~5.5 × 109 erg s-1 cm-2), WASP-72 b has a moderate size (1.27 ± 0.20 RJup) that could suggest a significant enrichment in heavy elements. Nevertheless, the errors on its physical parameters are still too high to draw any strong inference on its internal structure or its possible peculiarity. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP
Faedi, F.; Pollacco, D.; Barros, S. C. C. et al

in Astronomy and Astrophysics (2013), 551

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636+0.025-0.024RJ. It orbits a F9 star, evolving off the main sequence ... [more ▼]

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636+0.025-0.024RJ. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit (e = 0.067+0.033-0.025) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V = 10.42 mag, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571+0.034-0.035MJ and 0.672+0.049-0.046MJ, respectively; and radii of 1.092+0.035-0.033RJ for WASP-56b and 0.916+0.017-0.014RJ for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively. WASP-56b and WASP-57b show no radius anomaly and a high density possibly implying a large core of heavy elements; possibly as high as ~50 M⊕ in the case of WASP-57b. However,the composition of the deep interior of exoplanets remains still undetermined. Thus, more exoplanet discoveries such as the ones presented in this paper, are needed to understand and constrain giant planets' physical properties. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailThe CORALIE survey for southern extrasolar planets XVII. New and updated long period and massive planets
Marmier, M.; Ségransan, D.; Udry, S. et al

in Astronomy and Astrophysics (2013), 551

Context. Since 1998, a planet-search program around main sequence stars within 50 pc in the southern hemisphere has been carried out with the CORALIE echelle spectrograph at La Silla Observatory. Aims ... [more ▼]

Context. Since 1998, a planet-search program around main sequence stars within 50 pc in the southern hemisphere has been carried out with the CORALIE echelle spectrograph at La Silla Observatory. Aims: With an observing time span of more than 14 years, the CORALIE survey is now able to unveil Jovian planets on Jupiter's period domain. This growing period-interval coverage is important for building formation and migration models since observational constraints are still weak for periods beyond the ice line. Methods: Long-term precise Doppler measurements with the CORALIE echelle spectrograph, together with a few additional observations made with the HARPS spectrograph on the ESO 3.6 m telescope, reveal radial velocity signatures of massive planetary companions on long-period orbits. Results: In this paper we present seven new planets orbiting HD 27631, HD 98649, HD 106515A, HD 166724, HD 196067, HD 219077, and HD 220689, together with the CORALIE orbital parameters for three already known planets around HD 10647, HD 30562, and HD 86226. The period range of the new planetary companions goes from 2200 to 5500 days and covers a mass domain between 1 and 10.5 MJup. Surprisingly, five of them present very high eccentricities above e > 0.57. A pumping scenario by Kozai mechanism may be invoked for HD 106515Ab and HD 196067b, which are both orbiting stars in multiple systems. Since the presence of a third massive body cannot be inferred from the data of HD 98649b, HD 166724b, and HD 219077b, the origin of the eccentricity of these systems remains unknown. Except for HD 10647b, no constraint on the upper mass of the planets is provided by Hipparcos astrometric data. Finally, the hosts of these long period planets show no metallicity excess. [less ▲]

Detailed reference viewed: 11 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-80b: a gas giant transiting a cool dwarf
Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2013), 551

We report the discovery of a planet transiting the star <ASTROBJ>WASP-80</ASTROBJ> (<ASTROBJ>1SWASP J201240.26-020838.2</ASTROBJ>; <ASTROBJ>2MASS J20124017-0208391</ASTROBJ>; <ASTROBJ>TYC 5165-481-1 ... [more ▼]

We report the discovery of a planet transiting the star <ASTROBJ>WASP-80</ASTROBJ> (<ASTROBJ>1SWASP J201240.26-020838.2</ASTROBJ>; <ASTROBJ>2MASS J20124017-0208391</ASTROBJ>; <ASTROBJ>TYC 5165-481-1</ASTROBJ>; <ASTROBJ>BPM 80815</ASTROBJ>; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 M[SUB]jup[/SUB], 0.95 ± 0.03 R[SUB]jup[/SUB] gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the vsini[SUB]⋆[/SUB] inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening. Using WASP-South photometric observations, from Sutherland (South Africa), confirmed with the 60 cm TRAPPIST robotic telescope, EulerCam, and the CORALIE spectrograph on the Swiss 1.2 m Euler Telescope, and HARPS on the ESO 3.6 m (Prog ID 089.C-0151), all three located at La Silla Observatory, Chile.Radial velocity and photometric data are available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>(<A href="http://130.79.128.5">130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80</A> [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailAccurate spectroscopic parameters of WASP planet host stars
Doyle, Amanda P.; Smalley, B.; Maxted, P. F. L. et al

in Monthly Notices of the Royal Astronomical Society (2013), 428(4), 3164-3172

We have made a detailed spectral analysis of eleven Wide Angle Search for Planets (WASP) planet host stars using high signal-to-noise (S/N) HARPS spectra. Our line list was carefully selected from the ... [more ▼]

We have made a detailed spectral analysis of eleven Wide Angle Search for Planets (WASP) planet host stars using high signal-to-noise (S/N) HARPS spectra. Our line list was carefully selected from the spectra of the Sun and Procyon, and we made a critical evaluation of the atomic data. The spectral lines were measured using equivalent widths. The procedures were tested on the Sun and Procyon prior to be being used on the WASP stars. The effective temperature, surface gravity, microturbulent velocity and metallicity were determined for all the stars. We show that abundances derived from high S/N spectra are likely to be higher than those obtained from low S/N spectra, as noise can cause the equivalent width to be underestimated. We also show that there is a limit to the accuracy of stellar parameters that can be achieved, despite using high S/N spectra, and the average uncertainty in effective temperature, surface gravity, microturbulent velocity and metallicity is 83 K, 0.11 dex, 0.11 km/s and 0.10 dex respectively. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-77 Ab: A Transiting Hot Jupiter Planet in a Wide Binary System
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific (2013), 125

We report the discovery of a transiting planet with an orbital period of 1.36 days orbiting the brighter component of the visual binary star BD 07 436. The host star, WASP-77 A, is a moderately bright G8 ... [more ▼]

We report the discovery of a transiting planet with an orbital period of 1.36 days orbiting the brighter component of the visual binary star BD 07 436. The host star, WASP-77 A, is a moderately bright G8 V star (V=10.3) with a metallicity close to solar ([Fe/H] = 0.0 ± 0.1). The companion star, WASP-77 B, is a K-dwarf approximately 2 mag fainter at a separation of approximately 3″. The spectrum of WASP-77 A shows emission in the cores of the Caii H and K lines, indicative of moderate chromospheric activity. The Wide Angle Search for Planets (WASP) light curves show photometric variability with a period of 15.3 days and an amplitude of about 0.3% that is probably due to the magnetic activity of the host star. We use an analysis of the combined photometric and spectroscopic data to derive the mass and radius of the planet (1.76 ± 0.06 M[SUB]Jup[/SUB], 1.21 ± 0.02 R[SUB]Jup[/SUB]). The age of WASP-77 A estimated from its rotation rate (˜1 Gyr) agrees with the age estimated in a similar way for WASP-77 B (˜0.6 Gyr) but is in poor agreement with the age inferred by comparing its effective temperature and density to stellar models (˜8 Gyr). Follow-up observations of WASP-77 Ab will make a useful contribution to our understanding of the influence of binarity and host star activity on the properties of hot Jupiters. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
Peer Reviewed
See detailAnalysis of Spin-Orbit Alignment in the WASP-32, WASP-38, and HAT-P-27/WASP-40 Systems
Brown, D. J. A.; Collier Cameron, A.; Díaz, R. F. et al

in Astrophysical Journal (2012), 760

We present measurements of the spin-orbit alignment angle, λ, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the ... [more ▼]

We present measurements of the spin-orbit alignment angle, λ, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the Rossiter-McLaughlin effect for all three systems and also carry out Doppler tomography for WASP-32 and WASP-38. We find that WASP-32 (T [SUB]eff[/SUB] = 6140[SUP]+90[/SUP] [SUB]- 100[/SUB] K) is aligned, with an alignment angle of λ = 10fdg5[SUP] + 6.4[/SUP] [SUB] - 6.5[/SUB] obtained through tomography, and that WASP-38 (T [SUB]eff[/SUB] = 6180[SUP]+40[/SUP] [SUB]- 60[/SUB] K) is also aligned, with tomographic analysis yielding λ = 7fdg5[SUP] + 4.7[/SUP] [SUB] - 6.1[/SUB]. The latter result provides an order-of-magnitude improvement in the uncertainty in λ compared to the previous analysis of Simpson et al. We are only able to loosely constrain the angle for HAT-P-27/WASP-40 (T [SUB]eff[/SUB] = 5190[SUP]+160[/SUP] [SUB]- 170[/SUB] K) to λ = 24fdg2[SUP] + 76.0[/SUP] [SUB] - 44.5[/SUB], owing to the poor signal-to-noise ratio of our data. We consider this result a non-detection under a slightly updated version of the alignment test of Brown et al. We place our results in the context of the full sample of spin-orbit alignment measurements, finding that they provide further support for previously established trends. Based on observations (under proposal 087.C-0649) made using the HARPS High Resolution Échelle Spectrograph mounted on the ESO 3.6 m at the ESO La Silla observatory. [less ▲]

Detailed reference viewed: 10 (1 ULg)