References of "Traub, Wesley"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHigh precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
Malbet, Fabien; Léger, Alain; Shao, Michael et al

in Experimental Astronomy (2012), 34(2), 385-413

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within ... [more ▼]

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT—the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 μas (1 σ) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun. [less ▲]

Detailed reference viewed: 69 (20 ULg)
Full Text
See detailTaking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe
Mawet, Dimitri; Murakami, Naoshi; Delacroix, Christian ULg et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets V. (2011, September 01)

The Vector Vortex Coronagraph (VVC) is one of the most attractive new-generation coronagraphs for ground- and space-based exoplanet imaging/characterization instruments, as recently demonstrated on sky at ... [more ▼]

The Vector Vortex Coronagraph (VVC) is one of the most attractive new-generation coronagraphs for ground- and space-based exoplanet imaging/characterization instruments, as recently demonstrated on sky at Palomar and in the laboratory at JPL, and Hokkaido University. Manufacturing technologies for devices covering wavelength ranges from the optical to the mid-infrared, have been maturing quickly. We will review the current status of technology developments supported by NASA in the USA (Jet Propulsion Laboratory-California Institute of Technology, University of Arizona, JDSU and BEAMCo), Europe (University of Li`ege, Observatoire de Paris- Meudon, University of Uppsala) and Japan (Hokkaido University, and Photonics Lattice Inc.), using liquid crystal polymers, subwavelength gratings, and photonics crystals, respectively. We will then browse concrete perspectives for the use of the VVC on upcoming ground-based facilities with or without (extreme) adaptive optics, extremely large ground-based telescopes, and space-based internal coronagraphs. [less ▲]

Detailed reference viewed: 62 (11 ULg)
Full Text
See detailPolar-interferometry: what can be learnt from the IOTA/IONIC experiment
Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late ... [more ▼]

We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners. [less ▲]

Detailed reference viewed: 6 (0 ULg)