References of "Tlemcani, O"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOntogeny of Aromatase and Tyrosine Hydroxylase Activity and of Aromatase-Immunoreactive Cells in the Preoptic Area of Male and Female Japanese Quail
Balthazart, Jacques ULg; Tlemcani, O.; Harada, N. et al

in Journal of Neuroendocrinology (2000), 12(9), 853-66

The aromatization of testosterone into oestrogens plays a key role in the control of many behavioural and physiological aspects of reproduction. In the quail preoptic area (POA), aromatase activity and ... [more ▼]

The aromatization of testosterone into oestrogens plays a key role in the control of many behavioural and physiological aspects of reproduction. In the quail preoptic area (POA), aromatase activity and the number of aromatase-immunoreactive (ARO-ir) cells are sexually differentiated (males > females). This sex difference is implicated in the control of the sexually dimorphic behavioural response of quail to testosterone. We analysed the ontogenetic development of this sex difference by measuring aromatase activity and counting ARO-ir cells in the POA of males and females from day 1 post hatch to sexual maturity. We investigated in parallel another enzyme: tyrosine hydroxylase, the rate limiting step in catecholamine synthesis. Between hatching and 4 weeks of age, aromatase activity levels were low and equal in males and females. Aromatase activity then markedly increased in both sexes when subjects initiated their sexual maturation but this increase was more pronounced in males so that a marked difference in aromatase activity was present in 6 and 8 week-old subjects. Tyrosine hydroxylase activity progressively increased with age starting immediately after hatching and there was no abrupt modification in the slope of this increase when birds became sexually mature. No sex difference was detected in the activity of this enzyme. The number of ARO-ir cells in the POA progressively increased with age starting at hatching. No sex difference in ARO-ir cell numbers could be detected before subjects reached full sexual maturity. The analysis of the three-dimensional organization of ARO-ir cells in the POA revealed that, with increasing ages, ARO-ir cells acquire a progressively more lateral position: they are largely periventricular in young birds but they are found at higher density in the lateral part of the medial preoptic nucleus in adults. These data indicate that aromatase activity differentiates sexually when birds reach sexual maturity presumably under the activating effects of the increased testosterone levels in males. The number of ARO-ir cells, however, begins to increase in a non sexually differentiated manner before the rise in plasma testosterone in parallel with the increased tyrosine hydroxylase activity. Whether this temporal coincidence results from a general ontogenetic pattern or from more direct causal links remains to be established. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailFos Induction in the Japanese Quail Brain after Expression of Appetitive and Consummatory Aspects of Male Sexual Behavior
Tlemcani, O.; Ball, G. F.; D'Hondt, E. et al

in Brain Research Bulletin (2000), 52(4), 249-62

We investigated the expression of Fos, the protein product of the immediate early gene c-fos in the brain of male Japanese quail after they engaged in either appetitive or consummatory sexual behavior (i ... [more ▼]

We investigated the expression of Fos, the protein product of the immediate early gene c-fos in the brain of male Japanese quail after they engaged in either appetitive or consummatory sexual behavior (i. e., copulation). For 1 h, castrated males treated with testosterone were either allowed to copulate with a female or to exhibit a learned social proximity response indicative of appetitive sexual behavior. Control birds were either left in their home cage or placed in the experimental chamber but did not exhibit the appetitive sexual behavior because they had never learned it. Fos expression was studied with an immunocytochemical procedure in two sets of adjacent sections through the entire forebrain. These sections were immunolabelled with 2 different antibodies raised against a synthetic fragment corresponding to the 21 carboxy-terminal residues of the chicken Fos sequence. Contrary to the results of a previous study in which gonadally intact birds were used, Fos induction was observed neither in the medial preoptic nucleus nor in the nucleus intercollicularis in birds that had interacted for 1 h with a female. This may be related to a lower frequency of copulation in the testosterone-implanted birds than in intact birds, or to differences in the time the brains were collected after the birds engaged in sexual behavior between the two studies (60 min in this study, 120 min in the previous study). The performance of copulation and/or appetitive sexual behavior increased the number of Fos-immunoreactive cells in the ventral hyperstriatum, medial archistriatum, and nucleus striae terminalis. These increases were observed using both antibodies, although each antibody produced minor differences in the number of Fos-immunoreactive cells observed. Using one of the antibodies, but not the other, increases in Fos immunoreactivity were also observed in the nucleus accumbens and hyperstriatum after either copulation or appetitive sexual behavior. These differences illustrate how minor technical variations in the Fos immunocytochemical procedure influence the results obtained. These differences also show that Fos induction in a number of brain regions is observed after performance of consummatory (copulation) as well as appetitive (looking at the female) sexual behavior. This induction is, therefore, not related solely to the control of copulatory acts but, presumably, also to the processing in a variety of telencephalic association areas of stimuli originating from the female. The observation that increased Fos immunoreactivity is present in birds that had learned the response indicative of appetitive sexual behavior, and not in those that had not learned the behavior, further indicates that it is not simply the sight of the female that results in this Fos induction, but the analysis of the relevant stimuli in a sexually explicit context. Conditioned neural activity resulting from a learned association between the stimulus female and the performance of copulatory behavior may also explain some aspects of the brain activation observed in birds viewing, but not allowed to interact with, the female. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailDo Sex Differences in the Brain Explain Sex Differences in the Hormonal Induction of Reproductive Behavior? What 25 Years of Research on the Japanese Quail Tells Us
Balthazart, Jacques ULg; Tlemcani, O.; Ball, G. F.

in Hormones & Behavior (1996), 30(4), 627-61

Early workers interested in the mechanisms mediating sex differences in morphology and behavior assumed that differences in behavior that are commonly observed between males and females result from the ... [more ▼]

Early workers interested in the mechanisms mediating sex differences in morphology and behavior assumed that differences in behavior that are commonly observed between males and females result from the sex specificity of androgens and estrogens. [less ▲]

Detailed reference viewed: 172 (1 ULg)
Full Text
Peer Reviewed
See detailLocalization of Testosterone-Sensitive and Sexually Dimorphic Aromatase-Immunoreactive Cells in the Quail Preoptic Area
Balthazart, Jacques ULg; Tlemcani, O.; Harada, N.

in Journal of Chemical Neuroanatomy (1996), 11(3), 147-71

The distribution of aromatase-immunoreactive cells was studied in the medial preoptic nucleus of male and female quail that were sexually mature and gonadally intact, or gonadectomized, or gonadectomized ... [more ▼]

The distribution of aromatase-immunoreactive cells was studied in the medial preoptic nucleus of male and female quail that were sexually mature and gonadally intact, or gonadectomized, or gonadectomized and treated with testosterone. The study first confirmed the existence of a significant difference in the number of aromatase-immunoreactive cells between males and females (males > females) and the marked effect of castration and testosterone treatment which, respectively, decrease and restore the number of these cells. An analysis of the distribution in space of this neurochemically defined cell population was also carried out. This study revealed that castration does not uniformly decrease the density of aromatase-immunoreactive cells, but local increases are observed in an area directly adjacent to the third ventricle. A number of new sex differences in the organization of the medial preoptic nucleus and its population of aromatase cells have, in addition, been identified. The density of aromatase-immunoreactive cells is not higher in males than in females throughout the nucleus, but a higher density of immunoreactive cells is present in the ventromedial part of the nucleus in females as compared to males. In addition, the cross-sectional area of the nucleus as defined by the population of aromatase-immunoreactive cells is larger in males than in females in its rostral part and its shape is more elongated in the dorso-ventral direction in females than in males. Some of these differences (e.g. higher density of ARC-ir cells in the ventromedial part of the female POM, shape of the nucleus) appear to be organizational in nature, because they are still present in birds exposed to the same endocrine conditions during adult life (e.g. gonadectomized and treated with a same dose of testosterone). This conclusion should now be tested by experiments manipulating the endocrine environment of quail embryos. The anatomical heterogeneity of the medial preoptic nucleus revealed by this study also suggests a functional heterogeneity and the specific roles of the medial and lateral parts of the nucleus should also be investigated. [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailPre- and Post-Translational Regulation of Aromatase by Steroidal and Non-Steroidal Aromatase Inhibitors
Foidart, Agnès ULg; Tlemcani, O.; Harada, N. et al

in Brain Research (1995), 701(1-2), 267-78

Treatment of castrated quail with testosterone (T) reliably activates male copulatory behavior and, at the same time, increases the aromatase activity (AA), the number of aromatase-immunoreactive (ARO-ir ... [more ▼]

Treatment of castrated quail with testosterone (T) reliably activates male copulatory behavior and, at the same time, increases the aromatase activity (AA), the number of aromatase-immunoreactive (ARO-ir) cells and the concentration of aromatase mRNA as measured by RT-PCR in the brain. All these effects can be mimicked by estrogens. The behavioral effects of T can be blocked by a variety of aromatase inhibitors and, in parallel, the AA is strongly inhibited in the preoptic area (POA). We showed recently that the steroidal inhibitor, 4-OH-androstenedione (OHA) markedly decreases the immunostaining density of brain ARO-ir cells while the non-steroidal inhibitor, R76713 (racemic Vorozole; VOR) unexpectedly increased the density of this staining, despite the fact that the enzyme activity was completely inhibited. To generalize these findings and try to identify the underlying mechanism, we compared here the effects of two steroidal (OHA and androstatrienedione [ATD]) and two non-steroidal (VOR and Fadrozole [FAD]) aromatase inhibitors on the aromatase immunostaining and aromatase mRNA concentration in the brain of castrated quail concurrently treated with T. The 4 inhibitors significantly blocked the activation by T of male copulation. The two steroidal inhibitors decreased the immunostaining of brain ARO-ir cells but both VOR and FAD markedly enhanced the density of this staining. In parallel, OHA and ATD completely blocked the T-induced increase in aromatase mRNA concentration, while VOR and FAD had no effect on these RNA concentrations in the POA-anterior hypothalamus and they decreased them only slightly in the posterior hypothalamus. Taken together these results suggest that the inhibition of AA by ATD or OHA and the subsequent removal of locally produced estrogens blocks the synthesis of aromatase presumably at the transcriptional level. By contrast, the two non-steroidal inhibitors tested here block AA but in parallel increase the aromatase immunostaining. This effect does not result from an enhanced transcription and it is therefore speculated that these compounds increase either the translation of the aromatase mRNA or the half-life of the protein itself. [less ▲]

Detailed reference viewed: 20 (1 ULg)