References of "Tchemtchoua Tateu, Victor"
     in
Bookmark and Share    
Full Text
See detailChitosan-based biomimetic scaffolds and methods for preparing the same
Filée, Patrick; Freichels, Astrid ULg; Jérôme, Christine ULg et al

Patent (2011)

The invention concerns chitosan-based biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and ... [more ▼]

The invention concerns chitosan-based biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the present invention relates to a layered chitosan-based scaffold wherein said layered scaffold comprises at least two fused layers, wherein at least one layer consists of a chitosan nanofiber scaffold membrane and at least one of the other layers of a porous chitosan scaffold support layer. Moreover, the present invention provides a layered chitosan-based scaffold characterized by (i) a good adhesion between the porous and nanofiber layers, (ii) a tuneable porosity of the nanofiber layer by tuning the distance between the nanofibers, (iii) a stable nanofibers and porous morphology even when immersed in water or other solvents and a process for the preparation of such layered chitosan-based scaffold.Finally, the present invention provides the use of the layered electrospun chitosan-based scaffold of the invention or the layered electrospun chitosan-based scaffold produced by the process of the invention as a wound dressing, in tissue engineering or for biomedical applications. [less ▲]

Detailed reference viewed: 24 (5 ULg)
Full Text
See detailChitosan-based biomimetic scaffolds and methods for preparing the same
Filée, Patrice; Freichels, Astrid ULg; Jérôme, Christine ULg et al

Patent (2011)

The invention concerns chitosan biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and ... [more ▼]

The invention concerns chitosan biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the present invention relates to a layered chitosan scaffold wherein said layered scaffold comprises at least two fused layers, wherein at least one of the fused layers comprises a chitosan nanofiber membrane and the other fused layer comprises a porous chitosan support layer. Moreover, the present invention provides a layered chitosan scaffold characterized by (i) a good adhesion between the porous and nanofiber layers, (ii) a tuneable porosity of the nanofiber layer by tuning the distance between the nanofibers, (iii) a stable nanofibers and porous morphology even when immersed in water or other solvents and a process for the preparation of such layered chitosan scaffold. Finally, the present invention provides the use of the layered electrospun chitosan scaffold of the invention or the layered electrospun chitosan scaffold produced by the process of the invention as a wound dressing, in tissue engineering or for biomedical applications. [less ▲]

Detailed reference viewed: 26 (1 ULg)
Full Text
See detailChitosan-based nanofibers for wound dressing
Aqil, Abdelhafid ULg; Tchemtchoua Tateu, Victor ULg; Colige, Alain ULg et al

Poster (2011, May 12)

Detailed reference viewed: 51 (6 ULg)
Full Text
Peer Reviewed
See detailDevelopment of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration.
Tchemtchoua Tateu, Victor ULg; Atanasova, G.; Aqil, Abdelhafid ULg et al

in Biomacromolecules (2011), 12

The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant ... [more ▼]

The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial. [less ▲]

Detailed reference viewed: 58 (22 ULg)
See detailPreparation of cross-linked chitosan-based nanofibers as wound dressing
Aqil, Abdelhafid ULg; Ziani, K.; Tchemtchoua Tateu, Victor ULg et al

Poster (2009, November 18)

Detailed reference viewed: 51 (19 ULg)
Full Text
Peer Reviewed
See detailDevelopment of a procedure to simultaneously isolate RNA, DNA, and proteins from characterizing cells invading or cultured on chitosan scaffolds.
Tchemtchoua Tateu, Victor ULg; Atanasova, Ganka; Aqil, Abdelhafid ULg et al

in Analytical Biochemistry (2009), 393(1), 145-7

For many years, chitosan and its derivatives have been considered to be promising biomaterials for tissue engineering and repair. However, information regarding their biological effect on cell phenotype ... [more ▼]

For many years, chitosan and its derivatives have been considered to be promising biomaterials for tissue engineering and repair. However, information regarding their biological effect on cell phenotype is usually limited to evaluation of cell proliferation and survival, overlooking proteomic and transcriptomic analysis. This is largely related to the lack of efficient and quantitative procedures for protein and nucleic acid purification from cells cultured on, or inside, chitosan scaffold. Here we describe an ultracentrifugation procedure enabling the simultaneous and quantitative recovery of high quality RNA, DNA and proteins from cells growing in close contact of biomaterial matrices containing chitosan. [less ▲]

Detailed reference viewed: 52 (12 ULg)