References of "Tautz, lutz"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailEvaluating Effects of Tyrosine Phosphatase Inhibitors on T Cell Receptor Signaling
Rahmouni, Souad ULg; Delacroix, Laurence ULg; Liu, Wallace et al

in Phosphatase Modulators, Methods in Molecular Biology (2013)

The importance of tyrosine phosphorylation in normal cell physiology is well established, highlighted by the many human diseases that stem from abnormalities in protein tyrosine kinase (PTK) and protein ... [more ▼]

The importance of tyrosine phosphorylation in normal cell physiology is well established, highlighted by the many human diseases that stem from abnormalities in protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) function. Contrary to earlier assumptions, it is now clear that both PTKs and PTPs are highly specific, non-redundant, and tightly regulated enzymes. Hematopoietic cells express particularly high numbers of PTKs and PTPs, and aberrant function of these proteins have been linked to many hematopoietic disorders. While PTK inhibitors are among FDA approved drugs for the treatment of leukemia and other cancers, efforts to develop therapeutics that target specific PTPs are still in its infancy. Here, we describe methods on how to evaluate effects of PTP inhibitors on T cell receptor signaling. Moreover, we provide a comprehensive strategy for compound prioritization, applicable to any drug discovery project involving T cells. We present a testing funnel that starts with relatively high-throughput luciferase reporter assays, followed by immunoblot, calcium flux, flow cytometry, and proliferation assays, continues with cytokine bead arrays, and finishes with specificity assays that involve RNA interference. We provide protocols for experiments in the Jurkat T cell line, but more importantly give detailed instructions, paired with numerous tips, on how to prepare and work with primary human T cells. [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailLYP inhibits T-cell activation when dissociated from CSK
Vang; Liu, Wallace H; Delacroix, Laurence ULg et al

in Nature Chemical Biology (2012)

Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner ... [more ▼]

Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP–CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity. [less ▲]

Detailed reference viewed: 24 (1 ULg)
Full Text
Peer Reviewed
See detailMultidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells.
Wu, Shuangding; Vossius, Sofie ULg; Rahmouni, Souad ULg et al

in Journal of Medicinal Chemistry (2009), 52(21), 6716-23

Loss of VHR phosphatase causes cell cycle arrest in HeLa carcinoma cells, suggesting that VHR inhibition may be a useful approach to halt the growth of cancer cells. We recently reported that VHR is ... [more ▼]

Loss of VHR phosphatase causes cell cycle arrest in HeLa carcinoma cells, suggesting that VHR inhibition may be a useful approach to halt the growth of cancer cells. We recently reported that VHR is upregulated in several cervix cancer cell lines as well as in carcinomas of the uterine cervix. Here we report the development of multidentate small-molecule inhibitors of VHR that inhibit its enzymatic activity at nanomolar concentrations and exhibit antiproliferative effects on cervix cancer cells. Chemical library screening was used to identify hit compounds, which were further prioritized in profiling and kinetic experiments. SAR analysis was applied in the search for analogs with improved potency and selectivity, resulting in the discovery of novel inhibitors that are able to interact with both the phosphate-binding pocket and several distinct hydrophobic regions within VHR’s active site. This multidentate binding mode was confirmed by X-ray crystallography. The inhibitors decreased the proliferation of cervix cancer cells, while growth of primary normal keratinocytes was not affected. These compounds may be a starting point to develop drugs for the treatment of cervical cancer. [less ▲]

Detailed reference viewed: 56 (19 ULg)
Full Text
See detailSmall-Molecule Inhibitors of Vaccinia-H1-Related Phosphatase VHR.
Tautz, lutz; Mustelin, Tomas; Wu, Shuangding et al

Report (2009)

Vaccinia H1-related (VHR) protein tyrosine phosphatase dephosphorylates and thereby inactivates extracellular signal-regulated kinases Erk1/2 and c-Jun N-terminal kinases Jnk1/2. These mitogen-activated ... [more ▼]

Vaccinia H1-related (VHR) protein tyrosine phosphatase dephosphorylates and thereby inactivates extracellular signal-regulated kinases Erk1/2 and c-Jun N-terminal kinases Jnk1/2. These mitogen-activated protein (MAP) kinases mediate major signaling pathways triggered by extracellular growth factor, stress, or cytokines and regulate cellular processes such as differentiation, proliferation and apoptosis. Unlike many MAP kinase phosphatases (MKPs), VHR expression is not induced in response to activation of MAP kinases, but is instead regulated during cell cycle progression. The loss of VHR causes cell cycle arrest in HeLa carcinoma cells, suggesting that VHR inhibition may be a useful approach to halt the growth of cancer cells without detrimental effects on normal cells. Here we report the development of multidentate small-molecule inhibitors of VHR that inhibit its enzymatic activity at nanomolar concentrations and are selective for VHR over HePTP and MKP-1. This novel small molecular probe, ML113 (CID-6161281) appears to interact with both the phosphate-binding pocket and several distinct hydrophobic regions within VHR's active site. As a result, it will serve as a useful tool in probing these interactions and elucidating the molecular mechanism underlying the selectivity against this phosphatase, in addition to providing greater understanding of the functional consequences for cancer biology. [less ▲]

Detailed reference viewed: 50 (3 ULg)
Full Text
Peer Reviewed
See detailCervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR.
Henkens, Rachel ULg; Delvenne, Philippe ULg; Arafa, Mohammad et al

in BMC Cancer (2008), 8

BACKGROUND: The 21-kDa Vaccinia virus VH1-related (VHR) dual-specific protein phosphatase (encoded by the DUSP3 gene) plays a critical role in cell cycle progression and is itself regulated during the ... [more ▼]

BACKGROUND: The 21-kDa Vaccinia virus VH1-related (VHR) dual-specific protein phosphatase (encoded by the DUSP3 gene) plays a critical role in cell cycle progression and is itself regulated during the cell cycle. We have previously demonstrated using RNA interference that cells lacking VHR arrest in the G1 and G2 phases of the cell cycle and show signs of beginning of cell senescence. METHODS: In this report, we evaluated successfully the expression levels of VHR protein in 62 hysterectomy or conization specimens showing the various (pre) neoplastic cervical epithelial lesions and 35 additional cases of hysterectomy performed for non-cervical pathologies, from patients under 50 years of age. We used a tissue microarray and IHC technique to evaluate the expression of the VHR phosphatase. Immunofluorescence staining under confocal microscopy, Western blotting and RT-PCR methods were used to investigate the localization and expression levels of VHR. RESULTS: We report that VHR is upregulated in (pre) neoplastic lesions (squamous intraepithelial lesions; SILs) of the uterine cervix mainly in high grade SIL (H-SIL) compared to normal exocervix. In the invasive cancer, VHR is also highly expressed with nuclear localization in the majority of cells compared to normal tissue where VHR is always in the cytoplasm. We also report that this phosphatase is highly expressed in several cervix cancer cell lines such as HeLa, SiHa, CaSki, C33 and HT3 compared to primary keratinocytes. The immunofluorescence technique under confocal microscopy shows that VHR has a cytoplasmic localization in primary keratinocytes, while it localizes in both cytoplasm and nucleus of the cancer cell lines investigated. We report that the up-regulation of this phosphatase is mainly due to its post-translational stabilization in the cancer cell lines compared to primary keratinocytes rather than increases in the transcription of DUSP3 locus. CONCLUSION: These results together suggest that VHR can be considered as a new marker for cancer progression in cervix carcinoma and potential new target for anticancer therapy. [less ▲]

Detailed reference viewed: 85 (16 ULg)
Full Text
Peer Reviewed
See detailLipid raft targeting of hematopoietic protein tyrosine phosphatase by protein kinase C theta-mediated phosphorylation.
Nika, Konstantina; Charvet, Celine; Williams, Scott et al

in Molecular & Cellular Biology (2006), 26(5), 1806-16

Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic ... [more ▼]

Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling. [less ▲]

Detailed reference viewed: 37 (6 ULg)
Full Text
Peer Reviewed
See detailYersinia phosphatase induces mitochondrially dependent apoptosis of T cells.
Bruckner, Shane; Rahmouni, Souad ULg; Tautz, Lutz et al

in Journal of Biological Chemistry (2005), 280(11), 10388-94

To evade the immune system, the etiologic agent of plague, Yersinia pestis, injects an exceptionally active tyrosine phosphatase called YopH into host cells using a type III secretion system. We recently ... [more ▼]

To evade the immune system, the etiologic agent of plague, Yersinia pestis, injects an exceptionally active tyrosine phosphatase called YopH into host cells using a type III secretion system. We recently reported that YopH acutely inhibits T cell antigen receptor signaling by dephosphorylating the Lck tyrosine kinase. Here, we show that prolonged presence of YopH in primary T cells or Jurkat T leukemia cells causes apoptosis, detected by annexin V binding, mitochondrial breakdown, caspase activation, and internucleosomal fragmentation. YopH also causes cell death when expressed in HeLa cells, and this cell death was inhibited by YopH-specific small molecule inhibitors. Cell death induced by YopH was also prevented by caspase inhibition or co-expression of Bcl-xL. We conclude that YopH not only paralyzes T cells acutely, but also ensures that the cells will not recover to induce a protective immune response but instead undergo mitochondrially regulated programmed cell death. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
Peer Reviewed
See detailProtein tyrosine phosphatases in T cell physiology.
Mustelin, Tomas; Alonso, Andres; Bottini, Nunzio et al

in Molecular Immunology (2004), 41(6-7), 687-700

The molecular mechanisms of signal transduction have been the focus of intense research during the last decade. In T cells, much of the work has centered on protein tyrosine kinase-mediated signaling from ... [more ▼]

The molecular mechanisms of signal transduction have been the focus of intense research during the last decade. In T cells, much of the work has centered on protein tyrosine kinase-mediated signaling from the TCR and cytokine receptors, while the study of protein tyrosine phosphatases has lagged behind. Nevertheless, it has now become clear that many protein tyrosine phosphatases play equally important roles in T cell physiology and that no kinase-regulated system would work without the counterbalancing participation of phosphatases. In fact, we have learned that many processes are regulated primarily on the phosphatase side. This minireview summarizes the current state-of-the art in our understanding of the regulation and biology of protein tyrosine phosphatases in T lymphocyte physiology. [less ▲]

Detailed reference viewed: 23 (3 ULg)