References of "Tasseroul, Ludivine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAg/SiO2 and Cu/SiO2 cogelled xerogel catalysts for benzene combustion and 2-butanol deshydrogenation
Mahy, Julien ULg; Claude, Vincent ULg; Tasseroul, Ludivine ULg et al

Poster (2016, June 08)

Tars are recognized as major impurities when biomass is gazified into Syngas (mixture CO + H2) or when the methane reforming was produced from sustainaible reagents [1]. Therefore, fundamental knowledge ... [more ▼]

Tars are recognized as major impurities when biomass is gazified into Syngas (mixture CO + H2) or when the methane reforming was produced from sustainaible reagents [1]. Therefore, fundamental knowledge of catalytic oxidation and deshydrogenation mechanisms can be valuable to develop effective methods to control syngas or methane pollution. A very important concern about cogelled catalysts is the accessibility of the active centers. Because the silver and copper is located inside silica particles, there is a risk that it may not be accessible. In the case of benzene oxidation, it was observed that the specific activity (mol s-1 g-1Ag) of Ag/SiO2 and Cu/SiO2 catalysts increases when the silver or copper loading decreases (Fig. 1). In fact, visual observations by TEM showed that in samples Ag0.25, Ag0.45, Ag1.05 and Cu1.00, there are not silver or copper particles located on silica particles external surface and then the metal dispersion values are greater in these samples. So, it is the proof that Ag and Cu particles located inside the silica particles are accessible for benzene in this catalytic system. In the case of 2-butanol dehydrogenation, the specific activity of Cu/SiO2 catalysts increases when the copper loading increases or when the metal dispersion values decreases (Fig. 2). However, in Cu1.00 sample, copper particles inside silica particles only are observed by TEM. It seems that these metallic particles are accessible for 2-butanol in this catalytic system. [less ▲]

Detailed reference viewed: 75 (5 ULg)
Full Text
Peer Reviewed
See detailEfficient P- and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants
Bodson, Céline ULg; Heinrichs, Benoît ULg; Tasseroul, Ludivine ULg et al

in Journal of Alloys & Compounds (2016), 682

In this work, physico-chemical properties and photocatalytic activity of three types of dried or dried and calcined TiO2 materials, synthesized by the cogelation method, were studied: (i) a pure TiO2 ... [more ▼]

In this work, physico-chemical properties and photocatalytic activity of three types of dried or dried and calcined TiO2 materials, synthesized by the cogelation method, were studied: (i) a pure TiO2 xerogel ; (ii) TiO2 xerogels doped with Ag ; (iii) TiO2 xerogels co-doped with Ag and P. The presence of silver nanoparticles was observed by transmission electron microscopy (TEM) and the oxidation state of silver after calcination was examined by temperature-programmed reduction (TPR) measurements. The physico-chemical properties of xerogels were characterized by X-ray diffraction (XRD), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis) and from nitrogen adsorption-desorption isotherms. The photocatalytic activity of the samples was quantified for the p-nitrophenol degradation under visible light. [less ▲]

Detailed reference viewed: 185 (16 ULg)
Full Text
Peer Reviewed
See detailFe3+/Iron Oxide/SiO2 Xerogel Catalysts for p-nitrophenol Degradation by Photo-Fenton Effects: Influence of Thermal Treatment on Catalysts Texture
Mahy, Julien ULg; Tasseroul, Ludivine ULg; Herlitscke, Marcus et al

in Materials Today: Proceedings (2016), 3(2), 464-469

Three iron xerogel catalysts were synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS) which is able to form a chelate with iron ... [more ▼]

Three iron xerogel catalysts were synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS) which is able to form a chelate with iron ions. Four thermal treatments were applied to catalysts: drying, drying-autoclaving, calcination and calcination-autoclaving. Textural characterizations show that the specific surface area is increased by calcination while materials microporosity completely collapse when using autoclaving. Based on Mössbauer spectroscopy and magnetometry measurements, only Fe3+ species were observed in xerogel catalysts. The photo-Fenton effect of these catalysts was evaluated on the degradation of p-nitrophenol in aqueous media. In the presence of H2O2, results show that this effect reachs 99% of degradation after 24 h. Mössbauer and catalytic tests are presented in another paper. [less ▲]

Detailed reference viewed: 65 (33 ULg)
Full Text
Peer Reviewed
See detailPhotocatalytic decomposition of hydrogen peroxide over nanoparticles of TiO2 and Ni(II)-porphyrin doped TiO2: a relationship between activity and porphyrin anchoring mode
Tasseroul, Ludivine ULg; Pàez Martinez, Carlos ULg; Lambert, Stéphanie ULg et al

in Applied Catalysis B : Environmental (2016), 182

The nickel tetra(4-carboxyphenyl)porphyrin (TCPPNi) was chimisorbed on Degussa P25 TiO2 at different concentrations. Diffuse reflectance spectroscopy in the UV/vis region, Fourier transform infrared ... [more ▼]

The nickel tetra(4-carboxyphenyl)porphyrin (TCPPNi) was chimisorbed on Degussa P25 TiO2 at different concentrations. Diffuse reflectance spectroscopy in the UV/vis region, Fourier transform infrared spectroscopy and thermal gravimetry combined with differential scanning calorimetry measurements allowed the determination of the TCPPNi anchoring mode. At low TCPPNi concentrations, this anchoring on Degussa P25 TiO2 took place through all four carboxylic groups, while at higher concentrations the anchoring occurred through one or two carboxylic groups. For the firsttime,the effect of UV/vis light irradiation on the H2O2-degradation activity of TiO2 and TCPPNi-doped TiO2 was studied using the method of following the production of O2 by gas pressure monitoring. The activity of seven different catalysts was related to the TCPPNi anchoring mode and the percentage of TiO2 Degussa P25 coverage. An optimum degradation of H2O2 was observed for 0.0115 mol TCPPNi × g−1 P25. In that case, the TCPPNi was anchored through the four carboxylic groups, corresponding to a strong interaction with Degussa P25 TiO2. Moreover, the TCPPNi did not cover the surface completely, therefore allowing the light to reach and activate the TiO2. [less ▲]

Detailed reference viewed: 62 (12 ULg)
Full Text
Peer Reviewed
See detailDegradation of p-nitrophenol and bacteria with TiO2 xerogels sensitized in situ with tetra(4-carboxyphenyl)porphyrins
Tasseroul, Ludivine ULg; Lambert, Stéphanie ULg; Eskenazi, David et al

Poster (2015, September 10)

Heterogeneous photocatalysis is widely studied for environmental applications as oxidative processes can completely destroy organic pollutants such as alkanes, pesticides, dyes, etc. and microorganisms ... [more ▼]

Heterogeneous photocatalysis is widely studied for environmental applications as oxidative processes can completely destroy organic pollutants such as alkanes, pesticides, dyes, etc. and microorganisms. The most used photocatalyst is the commercial TiO2 Degussa P25, which is composed of 80% anatase and 20% rutile and which is active when TiO2 is exposed to UV light ( < 380 nm). Recently, several studies have been performed to extend the light absorption range of TiO2 towards the visible range. In this study, TiO2-based materials doped with porphyrins, a widely used dye for the photosensibilization of TiO2, have been prepared using a sol-gel process. To stabilize the TiO2-dye interactions, free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4-carboxyphenyl)porphyrin were introduced in situ into the TiO2 matrix during the sol-gel process rather than by grafting. Samples were thoroughly characterized by TEM, X-ray diffraction, FT-IR, DR-UV/Vis and their texture has been examined by nitrogen adsorption–desorption at 77 K. The photocatalytic activity for the degradation of p-nitrophenol and Escherichia coli and Lactobacillus rhamnosus bacteria cells in aqueous medium, under halogen lamp light have been evaluated in relation with the physico-chemical modifications induced by the doping. The low temperature vacuum drying protocol (150°C) used in the present study enabled to obtain porphyrin doped TiO2 xerogels with a high specific surface area, and containing nanoparticles composed of amorphous- and anatase-TiO2. Diffuse reflectance spectroscopy attest the presence of TCPPH2 and TCPPNi within the TiO2 matrix. In a first step, the photoactivity of the xerogels is tested for p-nitrophenol degradation. Results show that crystallinity and nature and concentration of porphyrin introduced in situ have major impact on the degradation performances. In a second step, the best xerogel for p-nitrophenol degradation has been used to degrade bacteria. This xerogel degrades E. coli and L. rhamnosus bacteria cells in less than 48 and 24 h respectively. The photocatalytic degradation of a pollutant is thus correlated to the degradation of bacteria since a xerogel doped with the TCPPNi degrades both p-nitrophenol, E. coli and L. rhamnosus. [less ▲]

Detailed reference viewed: 201 (7 ULg)
Full Text
Peer Reviewed
See detailEffect of iron nanoparticles synthesized by a sol-gel process on Rhodococcus erythropolis T902.1 for biphenyl degradation
Wannoussa, Wissal ULg; Masy, Thibaut ULg; Lambert, Stéphanie ULg et al

in Journal of Water Resource and Protection (2015), 7

Nanoparticles (NPS) are considered as a new generation of compounds to improve environmental remediation and biological processes. The aim of this study is to investigate the effect of iron NPS ... [more ▼]

Nanoparticles (NPS) are considered as a new generation of compounds to improve environmental remediation and biological processes. The aim of this study is to investigate the effect of iron NPS encapsulated in porous silica (SiO2) on the biphenyl biodegradation by Rhodococcus erythropolis T902.1 (RT902.1). The iron NPS (major iron oxide FexOy form) were dispersed in the porosity of a SiO2 support synthesized by sol-gel process. These Fe/SiO2 NPS offer a stimulating effect on the biodegradation rate of biphenyl, an organic pollutant that is very stable and water-insoluble. This positive impact of NPS on the microbial biodegradation was found to be dependent on the NPS concentration ranging from 10−6 M to 10−4 M. After 18 days of incubation the cultures containing NPS at a concentration of 10−4 M of iron improved RT902.1 growth and degraded 35% more biphenyl than those without NPS (positive control) or with the sole SiO2 particles. Though the microorganism could not interact directly with the insoluble iron NPS, the results show that about 10% and 35% of the initial 10−4 M iron NPS encapsulated in the SiO2 matrix would be incorporated inside or adsorbed on the cell surface respectively and 35% would be released in the supernatant. These results suggest that RT902.1 would produce siderophore-like molecules to attract iron from the porous silica matrix. [less ▲]

Detailed reference viewed: 201 (99 ULg)
Full Text
See detailAmélioration de la biodégradation du biphényle par Rhodococcus erythropolis t902.1 en présence de Fe2O3 et de nanoparticules de fer encapsulées dans un xérogel de silice
Wannoussa, Wissal ULg; Hiligsmann, Serge ULg; Tasseroul, Ludivine ULg et al

in Déchets Sciences et Techniques (2015), 69

In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus ... [more ▼]

In this work, the effect of iron oxide particles Fe2O3 and iron nanoparticles encapsulated in a porous silica matrix (xerogel Fe/SiO2) was investigated on biphenyl biodegradation by the strain Rhodococcus erythropolis T902.1. After 18 days of incubation biodegradation yields of 75% and 85% were achieved respectively in presence of non-autoclaved or autoclaved xerogel Fe/SiO2 at 10-5 M iron. These results are 42 and 60 % higher than in standard conditions without nanoparticles. They suggest that the autoclave procedure lead to the release of some iron less anchored in the silica matrix. This study highlights that siderophore production by Rhodococcus erythropolis T902.1 would be related to the presence of iron nanoparticles in the culture. It suggests that the production of these strong chelating compounds decreases with increase of iron release from xerogel Fe/SiO2. Moreover, most of the surfactants synthesized by Rhodococcus erythropolis T902.1 which are glycolipids containing trehalose (hexose), would be linked to cell surface and not excreted in the culture medium; the biomass hexose content also increased by 85% in presence of iron nanoparticles. [less ▲]

Detailed reference viewed: 106 (24 ULg)
Full Text
Peer Reviewed
See detailEffect of metal ions and metal nanoparticles encapsulated in porous silica on biphenyl biodegradation by Rhodococcus erythropolis T902.1
Wannoussa, Wissal ULg; Hiligsmann, Serge ULg; Tasseroul, Ludivine ULg et al

in Journal of Sol-Gel Science and Technology (2015), 75

Biodegradation of biphenyl was carried out by Rhodococcus erythropolis T902.1 in presence ofnanometer-sized metallic (Co, Pd, Ag and Cu) nanoparticles (NPS) synthesized by the sol-gel process. In order to ... [more ▼]

Biodegradation of biphenyl was carried out by Rhodococcus erythropolis T902.1 in presence ofnanometer-sized metallic (Co, Pd, Ag and Cu) nanoparticles (NPS) synthesized by the sol-gel process. In order to <br />prevent their agglomeration, the metallic NPs (1-2 nm diameter) were anchored inside microporous silica crystallites and named Co/SiO2, Pd/SiO2, Ag/SiO2 and Cu/SiO2 samples respectively. They were added at low concentrations of 10-6 M, 10-5 M and 10-4 M of metal in the culture medium and their impact was compared with that of the simple metal ions added as cobalt, palladium, silver or copper salts. The cultures containing Pd/SiO2 or Co/SiO2 samples at 10-4 M of metal achieved a 50% higher biphenyl degradation yield after 18 days of incubation and improved Rhodococcus erythropolis T902.1 growth compared with those without (positive control) or with silica particles only. The highest biodegradation performance, i.e. 107 ±3 ppm/day, which was about 85% higher than in control conditions without NPs, was recorded in 250 ml baffled flasks stirred at 150 rpm with Co/SiO2 sample at 10-4 M Co. Furthermore, the stimulating effect of NPs on biphenyl biodegradation seems to also depend on the thermal treatment conditions applied to NPs since the experimental results indicated that, after calcination, the cobalt oxide NPs at a concentration of 10-4 M were more effective than the reduced cobalt NPs with a degradation yield of 81 ±1% and 77 ±2% respectively after 18 days. On the other hand, the results showed that the addition of 10-4 M of Cu2+ or Ag+ ions or the addition of Cu/SiO2 or Ag/SiO2 samples at 10-4 M of metal have an inhibitory effect on biphenyl biodegradation. However, Cu2+ and Ag+ ions were more toxic to the Rhodococcus erythropolis T902.1 bacteria than the respective Cu or Ag NPS anchored inside silica particles. Moreover, this work showed that in these <br />conditions, the activity of catechol 1, 2-dioxygenase (a critical enzyme in aromatic biodegradation pathway) was severely inhibited, whereas the presence of 10-4 M of Co2+ ions or Co/SiO2 sample stimulated the enzyme activity compared to the conditions without NPs. [less ▲]

Detailed reference viewed: 174 (67 ULg)
Full Text
Peer Reviewed
See detailHighly dispersed iron xerogel catalysts for p-nitrophenol degradation by photo-Fenton effects
Mahy, Julien ULg; Tasseroul, Ludivine ULg; Zubiaur, Anthony ULg et al

in Microporous and Mesoporous Materials (2014), 197

Several iron xerogel catalysts were synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS) which is able to form a chelate with iron ... [more ▼]

Several iron xerogel catalysts were synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS) which is able to form a chelate with iron ions. The EDAS/TEOS ratio strongly influences the texture of xerogel catalysts. The specific surface area and the micro- and mesoporous volume increase with this ratio. It seems that EDAS plays a nucleating agent role for silica particles and allows to anchor Fe-based moieties inside the silica network. Iron oxide nanoparticles of diameter 1-1.5 nm and Fe3+ ions result, encapsulated in silica particles with sizes of about 10-30 nm in diameter. The iron species was determined by Mössbauer spectroscopy and magnetometry measurements and only Fe3+ species were observed in xerogel catalysts. The Fenton and photo-Fenton effect of these catalysts were evaluated on the degradation of p-nitrophenol in aqueous media under different conditions. Results show that in the presence of H2O2, iron xerogel catalysts present a photo-Fenton effect, reaching 99 % of degradation after 24 h. [less ▲]

Detailed reference viewed: 134 (40 ULg)
Peer Reviewed
See detailHighly dispersed iron xerogel catalysts for p-nitrophenol degradation by photo-Fenton effects
Mahy, Julien ULg; Tasseroul, Ludivine ULg; Zubiaur, Anthony ULg et al

Poster (2014, July)

Since the beginning of the industrial era, the various human activities have increased steadily, leading to a rapid technological development and a high population growth. Thus, the expansion of the ... [more ▼]

Since the beginning of the industrial era, the various human activities have increased steadily, leading to a rapid technological development and a high population growth. Thus, the expansion of the industry has heavily polluted the atmosphere, soil and water with negative consequences for humans and environment [1]. To decrease this pollution, it exists various treatment methods: chemical, physical and biological [2,3]. Among all these methods, a recent way of treatment is the degradation of pollutants in soils or waters by Fenton and photo-Fenton reactions [3] which use H2O2, iron-based compounds and UV light. In this way, several Fe2O3/SiO2 xerogel catalysts were synthesized by cogelation method by hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS) which is able to form a chelate with iron ions [4]. Five samples were synthesized: four samples with different percentage of iron (0.5, 1, 1.5 and 2.5 theoretical wt% confirmed by ICP-AES measurements), and a sample of pure silica. TEM pictures, nitrogen adsorption-desorption and mercury porosimetry measurements have established that EDAS plays a role of nucleating agent of silica particles [5,6] and allows to anchor iron particles inside silica network [4]. Indeed, it results iron nanoparticles of diameter 1-1.5 nm encapsulated in silica particles with sizes of about 10-30 nm in diameter. The species of iron was determined by Mössbauer spectroscopy and only Fe3+ ions were observed in xerogel catalysts. Then, the Fenton and photo-Fenton effect of these catalysts were evaluated on the degradation of p-nitrophenol (PNP) in aqueous medium in different conditions. Results show that Fe2O3/SiO2 xerogels present a photo-Fenton effect with H2O2, reaching with a sample 99 % of degradation after 24 h. [1] M. A. Khan, A. M. Ghouri, Environmental pollution: its effects on life and its remedies, Journal of Arts, Science & Commerce (Vol. 2), 2011, pg 276-285. [2] M. S. Kuyukina , I. B. Ivshina, Biology of rhodococcus: chapter 9, Springer, 2010, pg 232-256. [3] J. J. Pignatello, E. Oliveros, A. MacKay, Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry, Critical Reviews in Environmental Science and Technology (Vol. 36), 2006, pg 1-84. [4] B. Heinrichs, L. Rebbouh, J.W. Geus, S. Lambert, H.C.L. Abbenhuis, F. Grandjean, G.J. Long, J.-P. Pirard, R.A. van Santen, Iron (III) species dispersed in porous silica through sol-gel chemistry, Journal of Non-Crystalline Solids (Vol. 354), 2008, pg 665-672. [5] S. Lambert, C. Alié, J.-P. Pirard, B. Heinrichs, Study of textural properties and nucleation phenomenon in Pd/SiO2 , Ag/SiO2 and Cu/SiO2 cogelled xerogel catalysts, Journal of Non-Crystalline Solids (Vol. 342), 2004, pg 70-81. [6] B. Heinrichs, S. Lambert , N. Job , J.-P. Pirard, in "Catalyst Preparation: Science and Engineering, J. R. Regalbuto (Ed.)", CRC Press, Taylor & Francis Group, Boca Raton, 2007, p. 163-208. [less ▲]

Detailed reference viewed: 203 (29 ULg)
Full Text
Peer Reviewed
See detailRemediation of contaminated soils by the coupled action of microorganisms and metallic oxide nanoparticles
Mahy, Julien ULg; Tasseroul, Ludivine ULg; Masy, Thibaut ULg et al

Poster (2014, March 11)

In this work, it was developed an active "microorganism-nanoparticle" couple for soils bioremediation. The nanoparticles used in this work are iron oxide nanoparticles encapsulated in a silica matrix ... [more ▼]

In this work, it was developed an active "microorganism-nanoparticle" couple for soils bioremediation. The nanoparticles used in this work are iron oxide nanoparticles encapsulated in a silica matrix, called Fe2O3/SiO2 xerogel catalysts. The latter were synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-(2-aminoethylamino)propyltrimethoxysilane (EDAS), which is able to form a chelate with iron ions. Characterization of Fe2O3/SiO2 catalysts showed that two parameters strongly influence the gels texture: (i) the EDAS/TEOS molar ratio and (ii) the thermic treatments. The species of iron was determined by Mössbauer spectroscopy and only Fe3+ ions were observed in xerogel catalysts. In parallel, biphenyl degradation tests were achieved in the presence of micro-organisms and different sources of iron (salts or nanoparticles). Tests on the evolution of biphenyl concentration in aqueous medium were also performed alone to determine if the biphenyl undergoes degradation or evaporation in the test conditions. In this way, these tests have identified evaporation and abiotic degradation of biphenyl in the working conditions. Changes of these conditions have been suggested so that in future tests, the degradation of biphenyl by microorganisms and the potential impact of catalysts can be assessed more accurately. [less ▲]

Detailed reference viewed: 38 (4 ULg)
Full Text
See detailEffect of encapsulated nanoparticles on thermophillic anaerobic digestion
Al-Ahmad, Alaa Eddin ULg; Hiligsmann, Serge ULg; Lambert, Stéphanie ULg et al

Poster (2014, February 07)

Recently, enormous interest has been focused on biological applications of metal nanoparticles NPs due to their small size, high specified surface and their great potential in application to many science ... [more ▼]

Recently, enormous interest has been focused on biological applications of metal nanoparticles NPs due to their small size, high specified surface and their great potential in application to many science fields. The most studied process concerns zero valent palladium and iron NPs improving anaerobic biodegradation of chlorinated hydrocarbons (Windt et al., 2005). Moreover, investigation carried out in our lab showed that iron NPs encapsulated in silicate matrix may enhance hydrogen production by Clostridium butyricum (Beckers et al., 2013). Nevertheless the influences of metal NPs on methane producing anaerobic digestion have seldom been investigated. The present work investigates the enhancement effect of seven different metal NPs on methane production during the thermophilic anaerobic digestion. NPs of Cu, Pd, Pt, Ni, Co, Ag and Fe encapsulated in porous silica (SiO2) to prevent their coagulation and agglomeration, were added at concentration of 10-5mol/L in batch test (125ml serum bottles containing 70mL culture medium with 5g/L acetate monohydrate as the sole carbon substrate). Nickel, cobalt and iron NPs improved methane production from acetate. To confirm the previous results, the NPs were tested at different concentrations (10-4, 10-5, and 10-6 mol/L) with starch and glucose substrates. The results show that the impact increases with the increase of NPs concentrations up to 10-4 mol/L. The modified Gompertz equation was applied to describe the effect of NPs on anaerobic digestion. According to this model, the kinetic of methane production was particularly affected by nanoparticles addition. The values of the maximum methane production rate MPR (ml/day) was significantly higher 72.5% with nickel NPs at a concentration of 10-4 mol/L than the control without NPs. [less ▲]

Detailed reference viewed: 207 (31 ULg)
Full Text
Peer Reviewed
See detailP-doped titania xerogels as efficient UV-visible photocatalysts
Bodson, Céline ULg; Pirard, Sophie ULg; Pirard, René et al

in Journal of Materials Science and Chemical Engineering (2014), 2

In the present study, sol-gel process is used to synthesize P-doped TiO2 xerogels by the cogelation method of a functionalized P alkoxide, (NH2-(CH2)2-NH-(CH2)2-P(O)-(OC2H5)2) with Ti(OC3H7)4 in either 2 ... [more ▼]

In the present study, sol-gel process is used to synthesize P-doped TiO2 xerogels by the cogelation method of a functionalized P alkoxide, (NH2-(CH2)2-NH-(CH2)2-P(O)-(OC2H5)2) with Ti(OC3H7)4 in either 2-methoxyethanol or isopropanol. The phosphorus-doping improved the thermal stability of titania and decreased the phase transformation of anatase into rutile. This modification by phosphorus shifted the absorption edge of titania to the visible region as proved by Diffuse reflectance measurements, and thus offers the possibility to produce visible light effective TiO2 photocatalyst. The excellent photocatalytic activity of P-doped TiO2 xerogels compared to pure TiO2 could be explained by its high surface area and small TiO2-anatase crystallite size. From these results, it was proved by using three different models that phosphorus intrinsically influences the photocatalytic activity. [less ▲]

Detailed reference viewed: 192 (11 ULg)
Full Text
Peer Reviewed
See detailPhotocatalytic degradation of water pollutants with visible light-sensitized TiO2 xerogels
Tasseroul, Ludivine ULg; Pirard, Sophie ULg; Lambert, Stéphanie ULg et al

in Récents Progrès en Génie des Procédés (2014), 106

To extend its photocatalytic activity to visible light, TiO2 has been doped in situ through the cogelation sol-gel proces with two dyes : free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4 ... [more ▼]

To extend its photocatalytic activity to visible light, TiO2 has been doped in situ through the cogelation sol-gel proces with two dyes : free metal tetra(4-carboxyphenyl)porphyrin and nickel tetra(4-carboxyphenyl)porphyrin. DR and FT-IR spectroscopies have been performed to determine the interaction between porphyrins and TiO2. Cristallinity and specific surface area have been measured by XRD and N2 adsorption. The photoactivity of the doped TiO2 xerogels has been evaluated for p-nitrophenol (a model water pollutant) degradation under visible light and a kinetic study has been performed. The samples allow the degradation of 40% of p-nitrophenol in 6 h which makes them very promising for water decontamination under natural light. A kinetic study of p-nitrophenol degradation with the Ni-doped catalyst has shown that the best kinetic model involves one type of active site corresponding to the hole h+ of electron-hole pairs created at the TiO2 surface by light. The rate determining step consists of the surface reaction between adsorbed p-nitrophenol and adsorbed OH• radicals. [less ▲]

Detailed reference viewed: 81 (13 ULg)