References of "Talke, Ina N"
     in
Bookmark and Share    
Peer Reviewed
See detailEvolution of metal hyperaccumulation in Arabidopsis halleri
Hanikenne, Marc ULg; Kroymann, Juergen; Talke, Ina N. et al

Conference (2009, March 04)

Detailed reference viewed: 44 (3 ULg)
Full Text
Peer Reviewed
See detailEvolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4
Hanikenne, Marc ULg; Talke, Ina N.; Haydon, Michael J. et al

in Nature (2008), 453

Little is known about the types of mutations underlying the evolution of species-specific traits. The metal hyperaccumulator Arabidopsis halleri has the rare ability to colonize heavy-metal-polluted soils ... [more ▼]

Little is known about the types of mutations underlying the evolution of species-specific traits. The metal hyperaccumulator Arabidopsis halleri has the rare ability to colonize heavy-metal-polluted soils, and, as an extremophile sister species of Arabidopsis thaliana, it is a powerful model for research on adaptation. A. halleri naturally accumulates and tolerates leaf concentrations as high as 2.2% zinc and 0.28% cadmium in dry biomass. On the basis of transcriptomics studies, metal hyperaccumulation in A. halleri has been associated with more than 30 candidate genes that are expressed at higher levels in A. halleri than in A. thaliana. Some of these genes have been genetically mapped to broad chromosomal segments of between 4 and 24 cM co-segregating with Zn and Cd hypertolerance. However, the in planta loss-of-function approaches required to demonstrate the contribution of a given candidate gene to metal hyperaccumulation or hypertolerance have not been pursued to date. Using RNA interference to downregulate HMA4 (HEAVY METAL ATPASE 4) expression, we show here that Zn hyperaccumulation and full hypertolerance to Cd and Zn in A. halleri depend on the metal pump HMA4. Contrary to a postulated global trans regulatory factor governing high expression of numerous metal hyperaccumulation genes, we demonstrate that enhanced expression of HMA4 in A. halleri is attributable to a combination of modified cis-regulatory sequences and copy number expansion, in comparison to A. thaliana. Transfer of an A. halleri HMA4 gene to A. thaliana recapitulates Zn partitioning into xylem vessels and the constitutive transcriptional upregulation of Zn deficiency response genes characteristic of Zn hyperaccumulators. Our results demonstrate the importance of cis-regulatory mutations and gene copy number expansion in the evolution of a complex naturally selected extreme trait. The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils and for bio-fortification. [less ▲]

Detailed reference viewed: 179 (44 ULg)
See detailArabidopsis halleri, a model system to understand zinc homeostasis in plants
Hanikenne, Marc ULg; Talke, Ina N.; Hamilton, Christopher ULg et al

Poster (2007, November 16)

Detailed reference viewed: 16 (1 ULg)
See detailKey roles for metal transport proteins in naturally selected Zn/Cd hyperaccumulation and tolerance in A. halleri
Talke, Ina N.; Hanikenne, Marc ULg; Ertych, N. et al

Poster (2007, June 26)

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailTransition metal transport
Krämer, Ute; Talke, Ina N.; Hanikenne, Marc ULg

in FEBS Letters (2007), 581(12 Sp. Iss. SI), 2263-2272

Transition metal transporters are of central importance in the plant metal homeostasis network which maintains internal metal concentrations within physiological limits. An overview is given of the ... [more ▼]

Transition metal transporters are of central importance in the plant metal homeostasis network which maintains internal metal concentrations within physiological limits. An overview is given of the functions of known transition metal transporters in the context of the unique chemical properties of their substrates. The modifications of the metal homeostasis network associated with the adaptation to an extreme metalliferous environment are illustrated in two Brassicaceae metal hyperaccumulator model plants based on cross-species transcriptomics studies. In a comparison between higher plants and unicellular algae, hypotheses are generated for evolutionary changes in metal transporter complements associated with the transition to multicellularity. (c) 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 50 (5 ULg)
See detailGene regulation in Arabidopsis halleri, a model system to understand zinc homeostasis in plants.
Hanikenne, Marc ULg; Talke, Ina N.; Lanz, Christa et al

Conference (2006, December 18)

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailZinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri
Talke, Ina N.; Hanikenne, Marc ULg; Krämer, Ute

in Plant Physiology (2006), 142(1), 148-167

The metal hyperaccumulator Arabidopsis halleri exhibits naturally selected zinc (Zn) and cadmium (Cd) hypertolerance and accumulates extraordinarily high Zn concentrations in its leaves. With these ... [more ▼]

The metal hyperaccumulator Arabidopsis halleri exhibits naturally selected zinc (Zn) and cadmium (Cd) hypertolerance and accumulates extraordinarily high Zn concentrations in its leaves. With these extreme physiological traits, A. halleri phylogenetically belongs to the sister clade of Arabidopsis thaliana. Using a combination of genome-wide cross species microarray analysis and real-time reverse transcription-PCR, a set of candidate genes is identified for Zn hyperaccumulation, Zn and Cd hypertolerance, and the adjustment of micronutrient homeostasis in A. halleri. Eighteen putative metal homeostasis genes are newly identified to be more highly expressed in A. halleri than in A. thaliana, and 11 previously identified candidate genes are confirmed. The encoded proteins include HMA4, known to contribute to root-shoot transport of Zn in A. thaliana. Expression of either AtHMA4 or AhHMA4 confers cellular Zn and Cd tolerance to yeast (Saccharomyces cerevisiae). Among further newly implicated proteins are IRT3 and ZIP10, which have been proposed to contribute to cytoplasmic Zn influx, and FRD3 required for iron partitioning in A. thaliana. In A. halleri, the presence of more than a single genomic copy is a hallmark of several highly expressed candidate genes with possible roles in metal hyperaccumulation and metal hypertolerance. Both A. halleri and A. thaliana exert tight regulatory control over Zn homeostasis at the transcript level. Zn hyperaccumulation in A. halleri involves enhanced partitioning of Zn from roots into shoots. The transcriptional regulation of marker genes suggests that in the steady state, A. halleri roots, but not the shoots, act as physiologically Zn deficient under conditions of moderate Zn supply. [less ▲]

Detailed reference viewed: 50 (7 ULg)
Peer Reviewed
See detailStudy of metal regulation in Arabidopsis halleri, a model system to understand zinc homeostasis in plants
Hanikenne, Marc ULg; Talke, Ina N.; Galante, Carolina et al

Poster (2005, July 03)

Detailed reference viewed: 7 (1 ULg)