References of "Surdej, Jean"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLarger and faster: revised properties and a shorter orbital period for the WASP-57 planetary system from a pro-am collaboration
Southworth, John; Mancini, L.; Tregloan-Reed, J. et al

in Monthly Notices of the Royal Astronomical Society (2015), 454

Transits in the WASP-57 planetary system have been found to occur half an hour earlier than expected. We present 10 transit light curves from amateur telescopes, on which this discovery was based, 13 ... [more ▼]

Transits in the WASP-57 planetary system have been found to occur half an hour earlier than expected. We present 10 transit light curves from amateur telescopes, on which this discovery was based, 13 transit light curves from professional facilities which confirm and refine this finding, and high-resolution imaging which show no evidence for nearby companions. We use these data to determine a new and precise orbital ephemeris, and measure the physical properties of the system. Our revised orbital period is 4.5 s shorter than found from the discovery data alone, which explains the early occurrence of the transits. We also find both the star and planet to be larger and less massive than previously thought. The measured mass and radius of the planet are now consistent with theoretical models of gas giants containing no heavy-element core, as expected for the subsolar metallicity of the host star. Two transits were observed simultaneously in four passbands. We use the resulting light curves to measure the planet's radius as a function of wavelength, finding that our data are sufficient in principle but not in practise to constrain its atmospheric properties. We conclude with a discussion of the current and future status of transmission photometry studies for probing the atmospheres of gas-giant transiting planets. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
See detailCours No 1: Astrophysique et Techniques Spatiales: Ingés aéro/ Ingés Phys 2015-2016 (Fichier PDF + vidéos: mov)
Surdej, Jean ULg

Learning material (2015)

Dans la première partie du cours consacré à l'astrophysique galactique, nous étudierons les propriétés globales des astres (luminosités, couleurs, distances, masses, rayons). Dans la seconde partie, nous ... [more ▼]

Dans la première partie du cours consacré à l'astrophysique galactique, nous étudierons les propriétés globales des astres (luminosités, couleurs, distances, masses, rayons). Dans la seconde partie, nous aborderons l'étude des astres extragalactiques. Enfin, la troisième partie du cours sera consacrée à la compréhension des instruments et télescopes modernes utilisés tant au sol que dans l'espace. [less ▲]

Detailed reference viewed: 50 (11 ULg)
Full Text
See detailA Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency
Piron, Pierre ULg; Delacroix, Christian; Huby, Elsa ULg et al

in Shaklan, Stuart (Ed.) Techniques and Instrumentation for Detection of Exoplanets VII (2015, September 11)

The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a ... [more ▼]

The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed. [less ▲]

Detailed reference viewed: 20 (4 ULg)
See detailThe 4m International Liquid Mirror Telescope
Surdej, Jean ULg

Conference (2015, September 07)

The International Liquid Mirror Telescope (ILMT) consists of a 4-m diameter zenith telescope with a liquid mirror characterized by a f/2 focal ratio. It is a collaborative project between Belgium, Canada ... [more ▼]

The International Liquid Mirror Telescope (ILMT) consists of a 4-m diameter zenith telescope with a liquid mirror characterized by a f/2 focal ratio. It is a collaborative project between Belgium, Canada, India and Poland. The participating institutions are: Institute of Astrophysics and Geophysics of the Liege University (IAGL), the Royal Observatory of Belgium (ROB), six Canadian universities (British Columbia, Laval, Montreal, Toronto, Victoria and York), the Aryabatta Research Institute of Observational Sciences (ARIES, Nainital, India) and the Observatory of Poznan (UAM, Poland). This telescope is being installed at the Devasthal observatory, India (Longitude 79° 41' 04'' E, +29° 21' 40'' N, altitude 2450m), in the central Himalayas. First light should happen in early 2016. It will image every night a strip of sky having an approximate width of 27' in declination using a 4096 x 4096 pixel CCD detector that will work in the time delay integration (TDI) mode. The ILMT will thus perform a deep survey of a long and narrow strip of sky by looking at stars, galaxies, AGN, quasars, asteroids, space debris, ... crossing its field of view. It will observe in the i', r', g' SDSS spectral bands. This survey will thus be mainly dedicated to photometric and astrometric variability studies of faint objects. Among the main scientific goals, let us mention the detection and follow up of a few tens of multiply imaged quasars produced by gravitational lensing, hundreds of supernovae every year, detection of nearby brown dwarfs, white dwarfs and other faint stars based upon their trigonometric parallax and/or proper motion measurements, photometric variability studies of thousands of quasars and millions of stars as well as space debris detection at dusk and/or at dawn. Right now, numerous data sets have already been obtained of the ILMT strip of sky with smaller telescopes in the TDI mode. These will be used to carry out preliminary scientific projects and calibration of the ILMT data. A pipeline and database are presently in construction at the Poznan Observatory. Some videos and recent photographs will illustrate the present status of the ILMT project. [less ▲]

Detailed reference viewed: 10 (3 ULg)
Full Text
Peer Reviewed
See detailSingle Wavelength Coarse Phasing In Segmented Telescopes
Simar, Juan Felipe ULg; Stockman, Yvan ULg; Surdej, Jean ULg

in Applied Optics (2015), 54

Space observations of fainter and more distant astronomical objects constantly require telescope primary mirrors with a larger size. The diameter of monolithic primary mirrors is limited to 10 m because ... [more ▼]

Space observations of fainter and more distant astronomical objects constantly require telescope primary mirrors with a larger size. The diameter of monolithic primary mirrors is limited to 10 m because of manufacturing limitations. For space telescopes, the primary mirrors are limited to less than 5 m due to fairing capacity. Segmented primary mirrors thus constitute an alternative solution to deal with the steadily increase of the primary mirror size. The optical path di erence between the individual segments must be close to zero (few nm) in order to be di raction limited. We propose in this paper a new inter-segment piston sensor based on coherence measurement of a star image. This sensor is intended to be used in the co-phasing system of future segmented mirrors. [less ▲]

Detailed reference viewed: 84 (50 ULg)
Full Text
See detailA method to search for large-scale concavities in asteroid shape models
Devogele, Maxime ULg; Rivet, Jean-Pierre; Tanga, Paolo et al

in Monthly Notices of the Royal Astronomical Society (2015)

Light curve inversion is proven to produce an unique model solution only under the hypothesis that the asteroid is convex. However, it was suggested that the resulting shape model, for the case of non ... [more ▼]

Light curve inversion is proven to produce an unique model solution only under the hypothesis that the asteroid is convex. However, it was suggested that the resulting shape model, for the case of non-convex asteroid, is the convex-hull of the true asteroid non-convex shape. While a convex shape is already useful to provide the overall aspect of the target, much information about real shapes is missed, as we know that asteroids are very irregular. It is a commonly accepted evidence that large flat areas sometimes appearing on shapes derived from light curves correspond to concave areas, but this information has not been further explored and exploited so far. We present in this paper a method that allows to predict the presence of concavities from such flat regions. This method analyzes the distribution of the local normals to the facets composing shape models to predict the presence of abnormally large flat surfaces. In order to test our approach, we consider here its application to a large family of synthetic asteroid shapes, and to real asteroids with large scale concavities, whose detailed shape is known by other kinds of observations (radar and spacecraft encounters). The method that we propose is proven to be reliable and capable of providing a qualitative indication of the relevance of concavities on well-constrained asteroid shapes derived from purely photometric data sets. [less ▲]

Detailed reference viewed: 33 (5 ULg)
Full Text
See detailRealizing the diamond annular groove phase masks for the mid infrared region: five years of successful process development of diamond plasma etching
Forsberg, Pontus; Vargas Catalan, Ernesto; Delacroix, Christian ULg et al

in Navarro, Ramon; Cunningham, Colin; Barto, Allison (Eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (2014, August 07)

The Annular Groove Phase Mask (AGPM) is a circularly symmetric half wave plate consisting of a circular high aspect ratio sub-wavelength grating. Here we present a method for realizing such structures in ... [more ▼]

The Annular Groove Phase Mask (AGPM) is a circularly symmetric half wave plate consisting of a circular high aspect ratio sub-wavelength grating. Here we present a method for realizing such structures in diamond. To improve the AGPM performance, antireflective sub-wavelength gratings are etched on the backside of the components, and such gratings are also discussed. Components for the N-band (around 10 μm) and the L-band (around 3.8 μm) have been successfully fabricated. We are currently developing the process further to improve the precision of the gratings and produce an AGPM for the K-band (around 2.2 μm). © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
See detailL'-band AGPM vector vortex coronagraph's first light on LBTI/LMIRCam
Defrère, D.; Absil, Olivier ULg; Hinz, P. et al

in Proceedings of SPIE - The International Society for Optical Engineering (2014, July 21)

We present the first observations obtained with the L'-band AGPM vortex coronagraph recently installed on LBTI/LMIRCam. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from ... [more ▼]

We present the first observations obtained with the L'-band AGPM vortex coronagraph recently installed on LBTI/LMIRCam. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from diamond subwavelength gratings. It is designed to improve the sensitivity and dynamic range of high-resolution imaging at very small inner working angles, down to 0.09 arcseconds in the case of LBTI/LMIRCam in the L' band. During the first hours on sky, we observed the young A5V star HR8799 with the goal to demonstrate the AGPM performance and assess its relevance for the ongoing LBTI planet survey (LEECH). Preliminary analyses of the data reveal the four known planets clearly at high SNR and provide unprecedented sensitivity limits in the inner planetary system (down to the diffraction limit of 0.09 arcseconds). © 2014 SPIE. [less ▲]

Detailed reference viewed: 22 (4 ULg)
Full Text
See detailThe VORTEX project: first results and perspectives
Absil, Olivier ULg; Mawet, Dimitri; Delacroix, Christian ULg et al

in Marchetti, Enrico; Close, Laird; Véran, Jean-Pierre (Eds.) Adaptive Optics Systems IV (2014, July 21)

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the ... [more ▼]

Vortex coronagraphs are among the most promising solutions to perform high contrast imaging at small angular separations from bright stars. They feature a very small inner working angle (down to the diffraction limit of the telescope), a clear 360 degree discovery space, have demonstrated very high contrast capabilities, are easy to implement on high-contrast imaging instruments, and have already been extensively tested on the sky. Since 2005, we have been designing, developing and testing an implementation of the charge-2 vector vortex phase mask based on concentric sub-wavelength gratings, referred to as the Annular Groove Phase Mask (AGPM). Science-grade mid-infrared AGPMs were produced in 2012 for the first time, using plasma etching on synthetic diamond substrates. They have been validated on a coronagraphic test bench, showing broadband peak rejection up to 500:1 in the L band, which translates into a raw contrast of about 6e-5 at 2λ/D. Three of them have now been installed on world-leading diffraction-limited infrared cameras, namely VLT/NACO, VLT/VISIR and LBT/LMIRCam. During the science verification observations with our L-band AGPM on NACO, we observed the beta Pictoris system and obtained unprecedented sensitivity limits to planetary companions down to the diffraction limit (0.1"). More recently, we obtained new images of the HR 8799 system at L band during the AGPM first light on LMIRCam. After reviewing these first results obtained with mid-infrared AGPMs, we will discuss the short- and mid-term goals of the on-going VORTEX project, which aims to improve the performance of our vortex phase masks for future applications on second-generation high-contrast imager and on future extremely large telescopes (ELTs). In particular, we will briefly describe our current efforts to improve the manufacturing of mid-infrared AGPMs, to push their operation to shorter wavelengths, and to provide deeper starlight extinction by creating new designs for higher topological charge vortices. Within the VORTEX project, we also plan to develop new image processing techniques tailored to coronagraphic images, and to study some pre- and post-coronagraphic concepts adapted to the vortex coronagraph in order to reduce scattered starlight in the final images. [less ▲]

Detailed reference viewed: 93 (39 ULg)
Full Text
See detailThe VORTEX coronagraphic test bench
Jolivet, Aïssa ULg; Piron, Pierre ULg; Huby, Elsa ULg et al

in Navarro, Ramon; Cunningham, Colin; Barto, Allison (Eds.) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (2014, July 18)

In this paper, we present the infrared coronagraphic test bench of the University of Liège named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the ... [more ▼]

In this paper, we present the infrared coronagraphic test bench of the University of Liège named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also aim to test other pre- and/or post-coronagraphic concepts such as optimal apodization. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [less ▲]

Detailed reference viewed: 29 (9 ULg)