References of "Street, R. A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Super-Jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406
Tsapras, Y.; Choi, J.-Y.; Street, R. A. et al

in Astrophysical Journal (2014), 782

We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve ... [more ▼]

We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\pm 0.43\ M_{\rm J}$ planet orbiting a $0.44\pm 0.07\ M_{\odot}$ early M-type star. The distance to the lens is $4.97\pm 0.29$\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens. [less ▲]

Detailed reference viewed: 33 (3 ULg)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-311: A planetary candidate below the threshold of reliable detection
Yee, J. C.; Hung, L.-W.; Bond, I. A. et al

in Astrophysical Journal (2013), 769(1), 77

We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a ... [more ▼]

We analyze MOA-2010-BLG-311, a high magnification (A_max>600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a 2-body lens model and find that the 2-body lens model is a better fit but with only Delta chi^2~140. The preferred mass ratio between the lens star and its companion is $q=10^(-3.7+/-0.1), placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question. [less ▲]

Detailed reference viewed: 28 (10 ULg)
Full Text
Peer Reviewed
See detailMicrolensing Discovery of a Population of Very Tight, Very Low Mass Binary Brown Dwarfs
Choi, J.-Y.; Han, C.; Udalski, A. et al

in Astrophysical Journal (2013), 768

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD ... [more ▼]

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M [SUB]⊙[/SUB]. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries. [less ▲]

Detailed reference viewed: 28 (0 ULg)
Full Text
Peer Reviewed
See detailEMCCD photometry reveals two new variable stars in the crowded central region of the globular cluster NGC 6981
Skottfelt, J.; Bramich, D. M.; Figuera Jaimes, R. et al

in Astronomy and Astrophysics (2013), 553

Two previously unknown variable stars in the crowded central region of the globular cluster NGC 6981 are presented. The observations were made using the electron multiplying CCD (EMCCD) camera at the ... [more ▼]

Two previously unknown variable stars in the crowded central region of the globular cluster NGC 6981 are presented. The observations were made using the electron multiplying CCD (EMCCD) camera at the Danish 1.54 m Telescope at La Silla, Chile. The two variableswere not previously detected by conventional CCD imaging because of their proximity to a bright star. This discovery demonstrates that EMCCDs are a powerful tool for performing high-precision time-series photometry in crowded fields and near bright stars, especially when combined with difference image analysis. Based on data collected by MiNDSTEp with the Danish 1.54 m telescope. [less ▲]

Detailed reference viewed: 19 (4 ULg)
Full Text
Peer Reviewed
See detailA giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251
Kains, N.; Street, R. A.; Choi, J.-Y. et al

in Astronomy and Astrophysics (2013), 552

<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing ... [more ▼]

<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. <BR /> Methods: Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10[SUP]-3[/SUP]. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. <BR /> Results: We find that the lens is made up of a planet of mass 0.53 ± 0.21 M[SUB]J[/SUB] orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M[SUB]⊙[/SUB]. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU. [less ▲]

Detailed reference viewed: 32 (15 ULg)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-523: "Failed Planet" = RS CVn Star
Gould, A.; Yee, J. C.; Bond, I. A. et al

in Astrophysical Journal (2013), 763

The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The ... [more ▼]

The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge. Based on observations made with the European Southern Observatory telescopes, Program ID 85.B-0399(I). [less ▲]

Detailed reference viewed: 24 (6 ULg)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-073L: An M-dwarf with a Substellar Companion at the Planet/Brown Dwarf Boundary
Street, R. A.; Choi, J.-Y.; Tsapras, Y. et al

in Astrophysical Journal (2013), 763

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the ... [more ▼]

We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010 March 18. This event was remarkable because the source was previously known to be photometrically variable. Analyzing the pre-event source light curve, we demonstrate that it is an irregular variable over timescales >200 days. Its dereddened color, (V - I)[SUB] S, 0[/SUB], is 1.221 ± 0.051 mag, and from our lens model we derive a source radius of 14.7 ± 1.3 R [SUB]&sun;[/SUB], suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q = 0.0654 ± 0.0006. The Einstein crossing time of the event, t [SUB]E[/SUB] = 44.3 ± 0.1 days, was sufficiently long that the light curve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, D[SUB]L[/SUB] = 2.8 ± 0.4 kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with M [SUB] L, 1[/SUB] = 0.16 ± 0.03 M [SUB]&sun;[/SUB], while the companion has M [SUB] L, 2[/SUB] = 11.0 ± 2.0 M [SUB]J[/SUB], putting it in the boundary zone between planets and brown dwarfs. [less ▲]

Detailed reference viewed: 20 (2 ULg)
Full Text
Peer Reviewed
See detailMOA-2010-BLG-328Lb: a sub-Neptune orbiting very late M dwarf ?
Furusawa, K.; Udalski, A.; Sumi, T. et al

in Astrophysical Journal (2013), 91

We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and ... [more ▼]

We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the host's a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions. [less ▲]

Detailed reference viewed: 22 (11 ULg)
Full Text
Peer Reviewed
See detailWASP-36b: A new transiting planet around a metal-poor G-dwarf, and an analysis of correlated noise in transit light curves
Smith, A. M. S.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomical Journal (The) (2012), 143(4), 10

We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54-d orbit. The host star, WASP-36, is a magnitude 12.7, metal-poor G2 dwarf (Teff = 5881 +/- 137 K), with [Fe/H] = -0.31 ... [more ▼]

We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54-d orbit. The host star, WASP-36, is a magnitude 12.7, metal-poor G2 dwarf (Teff = 5881 +/- 137 K), with [Fe/H] = -0.31 +/- 0.12. We determine the planet to have mass and radius respectively 2.27 +/- 0.07 and 1.27 +/- 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allows us to investigate the extent to which red noise in follow-up light curves affects the fitted system parameters. We find that the solutions obtained by analysing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves. [less ▲]

Detailed reference viewed: 32 (1 ULg)
Full Text
Peer Reviewed
See detailA New Type of Ambiguity in the Planet and Binary Interpretations of Central Perturbations of High-magnification Gravitational Microlensing Events
Choi, J.-Y.; Shin, I.-G.; Han, C. et al

in Astrophysical Journal (2012), 756

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion ... [more ▼]

High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the essentially different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for two high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the χ[SUP]2[/SUP] difference between the planetary and binary model is ~3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ[SUP]2[/SUP] ~ 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that two events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common. [less ▲]

Detailed reference viewed: 26 (5 ULg)
Full Text
Peer Reviewed
See detailOGLE-2008-BLG-510: first automated real-time detection of a weak microlensing anomaly - brown dwarf or stellar binary?
Bozza, V.; Dominik, M.; Rattenbury, N. J. et al

in Monthly Notices of the Royal Astronomical Society (2012), 424

The microlensing event OGLE-2008-BLG-510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system ... [more ▼]

The microlensing event OGLE-2008-BLG-510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system in real time. The skewness of the light curve appears to be compatible both with binary-lens and binary-source models, including the possibility that the lens system consists of an M dwarf orbited by a brown dwarf. The detection of this microlensing anomaly and our analysis demonstrate that: (1) automated real-time detection of weak microlensing anomalies with immediate feedback is feasible, efficient and sensitive, (2) rather common weak features intrinsically come with ambiguities that are not easily resolved from photometric light curves, (3) a modelling approach that finds all features of parameter space rather than just the 'favourite model' is required and (4) the data quality is most crucial, where systematics can be confused with real features, in particular small higher order effects such as orbital motion signatures. It moreover becomes apparent that events with weak signatures are a silver mine for statistical studies, although not easy to exploit. Clues about the apparent paucity of both brown-dwarf companions and binary-source microlensing events might hide here. Based in part on data collected by MiNDSTEp with the Danish 1.54m telescope at the ESO La Silla Observatory. [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailCharacterizing Low-mass Binaries from Observation of Long-timescale Caustic-crossing Gravitational Microlensing Events
Shin, I.-G.; Han, C.; Choi, J.-Y. et al

in Astrophysical Journal (2012), 755

Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of ... [more ▼]

Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of two binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 M [SUB]&sun;[/SUB] and 0.39 M [SUB]&sun;[/SUB] for MOA-2011-BLG-090 and 0.57 M [SUB]&sun;[/SUB] and 0.17 M [SUB]&sun;[/SUB] for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future. [less ▲]

Detailed reference viewed: 17 (5 ULg)
Full Text
Peer Reviewed
See detailMOA 2010-BLG-477Lb: Constraining the Mass of a Microlensing Planet from Microlensing Parallax, Orbital Motion, and Detection of Blended Light
Bachelet, E.; Shin, I.-G.; Han, C. et al

in Astrophysical Journal (2012), 754

Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form ... [more ▼]

Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA 2010-BLG-477. The measured planet-star mass ratio is q = (2.181 ± 0.004) × 10[SUP]-3[/SUP] and the projected separation is s = 1.1228 ± 0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θ[SUB]E[/SUB] = 1.38 ± 0.11 mas. Combining this measurement with constraints on the "microlens parallax" and the lens flux, we can only limit the host mass to the range 0.13 < M/M [SUB]&sun;[/SUB] < 1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M [SUB]*[/SUB] = 0.67[SUP]+0.33[/SUP] [SUB]- 0.13[/SUB] M [SUB]&sun;[/SUB] and m[SUB]p[/SUB] = 1.5[SUP]+0.8[/SUP] [SUB]- 0.3[/SUB] M [SUB]JUP[/SUB] at a distance of D = 2.3 ± 0.6 kpc, and with a semi-major axis of a = 2[SUP]+3[/SUP] [SUB]- 1[/SUB] AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
Peer Reviewed
See detailA brown dwarf orbiting an M-dwarf: MOA 2009-BLG-411L
Bachelet, E.; Fouqué, P.; Han, C. et al

in Astronomy and Astrophysics (2012), 547

Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the ... [more ▼]

Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted. <BR /> Aims: MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit. <BR /> Methods: Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties by using a more refined method than the classical one: we measure the interstellar absorption along the line of sight in five different passbands (VIJHK). Secondly, we model the lightcurve by using the standard technique: make (s,q,α) grids to look for local minima and refine the results by using a downhill method (Markov chain Monte Carlo). Finally, we use a Galactic model to estimate the physical properties of the lens components. <BR /> Results: We find that the source star is a giant G star with radius 9 R[SUB]&sun;[/SUB]. The grid search gives two local minima, which correspond to the theoretical degeneracy s ≡ s[SUP]-1[/SUP]. We find that the lens is composed of a brown dwarf secondary of mass M[SUB]S[/SUB] = 0.05 M[SUB]&sun;[/SUB] orbiting a primary M-star of mass M[SUB]P[/SUB] = 0.18 M[SUB]&sun;[/SUB]. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries. <BR /> Conclusions: As far as we are aware, this is the first detection using the microlensing technique of a binary system in our Galaxy composed of an M-star and a brown dwarf. Appendix is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-35b, WASP-48b and WASP-51b: Two new planets and an independent discovery of HAT-P-30b
Enoch, B.; Anderson, D. R.; Barros, S. C. C. et al

in Astronomical Journal (The) (2011), 142(3), 86

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star ... [more ▼]

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R_sun in the Northern hemisphere, and the independent discovery of HAT-P-30b / WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, FTS and TRAPPIST photometry, with CORALIE, SOPHIE and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 +/- 0.06 M_J and radius of 1.32 +/- 0.03 R_J, and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 +/- 0.09 M_J, radius of 1.67 +/- 0.08 R_J and orbits in 2.14 days, while WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 +/- 0.05 M_J and radius of 1.42 +/- 0.04 R_J, agreeing with values of 0.71 +/- 0.03 M_J and 1.34 +/- 0.07 R_J reported for HAT-P-30b. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-31b: a low-density planet transiting a metal-poor, late-F-type dwarf star
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astronomy and Astrophysics (2011), 531

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 ... [more ▼]

We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.47 Jupiter masses and 1.56 Jupiter radii. It is in a 3.4-day orbit around a 1-Gyr-old, late-F-type, V = 11.7 star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. [less ▲]

Detailed reference viewed: 9 (2 ULg)
Full Text
Peer Reviewed
See detailMOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf
Batista, V.; Gould, A.; Dieters, S. et al

in Astronomy and Astrophysics (2011), 529

<BR /> Aims: We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the ... [more ▼]

<BR /> Aims: We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M[SUB]&sun;[/SUB] < M[SUB]host[/SUB] < 0.49 M[SUB]&sun;[/SUB] at 90% confidence. The planet-star mass ratio q = 0.0132 ± 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m[SUB]p[/SUB] = 2.6 Jupiter masses for the median host mass, M = 0.19 M[SUB]&sun;[/SUB]. <BR /> Methods: The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius θ[SUB]E[/SUB] = 0.31 ± 0.03 mas has been accurately measured, but the other (the microlens parallax π[SUB]E[/SUB], which is due to the Earth's orbital motion) is highly degenerate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. <BR /> Results: The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D[SUB]L[/SUB] < 7.9 kpc, 1.1 AU < a < 2.7 AU, and 3.8 yr < P < 7.6 yr, respectively. Photometric data is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/529/A102">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/529/A102</A> [less ▲]

Detailed reference viewed: 19 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to ... [more ▼]

We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-25b: a 0.6 M-J planet in the Southern hemisphere
Enoch, B.; Cameron, A Collier; Anderson, D. R. et al

in Monthly Notices of the Royal Astronomical Society (2011), 410(3), 16311636

We report the detection of a 0.6 M-J extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE ... [more ▼]

We report the detection of a 0.6 M-J extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of R[SUB]p[/SUB] = 1.22 R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.58 M[SUB]J[/SUB] around a slightly metal-poor solar-type host star, [Fe/H] = - 0.05 +/- 0.10, of R[SUB]*[/SUB] = 0.92 R[SUB]solar[/SUB] and M[SUB]*[/SUB] = 1.00 M[SUB]solar[/SUB]. WASP-25b is found to have a density of ρ[SUB]p[/SUB] = 0.32 ρ[SUB]J[/SUB], a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets well. [less ▲]

Detailed reference viewed: 19 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-30b: a 61 Mjup brown dwarf transiting a V=12, F8 star
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

in Astrophysical Journal Letters (2011), 726(2), 19

We report the discovery of a 61-Jupiter-mass brown dwarf (BD), which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We ... [more ▼]

We report the discovery of a 61-Jupiter-mass brown dwarf (BD), which transits its F8V host star, WASP-30, every 4.16 days. From a range of age indicators we estimate the system age to be 1-2 Gyr. We derive a radius (0.89 ± 0.02 R Jup) for the companion that is consistent with that predicted (0.914 R Jup) by a model of a 1 Gyr old, non-irradiated BD with a dusty atmosphere. The location of WASP-30b in the minimum of the mass-radius relation is consistent with the quantitative prediction of Chabrier & Baraffe, thus confirming the theory. [less ▲]

Detailed reference viewed: 24 (0 ULg)