References of "Steyaert, Jan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAllosteric inhibition of VIM metallo-beta-lactamase by a camelid nanobody
Sohier, Jean ULg; Laurent, Clémentine ULg; Chevigné, Andy et al

in Biochemical Journal (2013), 450(3), 477-486

Metallo-β-lactamase (MβL) enzymes are usually produced by multiresistant Gram-negative bacterial strains and have spread worldwide. An approach based on phage display was employed to select single-domain ... [more ▼]

Metallo-β-lactamase (MβL) enzymes are usually produced by multiresistant Gram-negative bacterial strains and have spread worldwide. An approach based on phage display was employed to select single-domain antibody fragments (VHHs also called Nanobodies) that would inhibit the clinically relevant VIM-4 MβL. Out of more than 50 selected nanobodies, only the NbVIM_38 nanobody inhibited VIM-4. The paratope, inhibition mechanism and epitope of NbVIM_38 nanobody were then characterised. An alanine scan of the NbVIM_38 paratope showed that its binding was driven by hydrophobic amino acids. The inhibitory concentration was in the µM range for all tested β-lactams. In addition, the inhibition was found to follow a mixed hyperbolic profile with a predominantly uncompetitive component. Moreover, substrate inhibition was recorded only after nanobody binding. These kinetic data are indicative of a binding site that is distant from the active site. This finding was confirmed by epitope mapping analysis that was performed using peptides, and which identified two stretches of amino acids in the L6 loop and at the end of the alpha2 helix. Because this binding site is distant from the active site and alters both the substrate binding and catalytic properties of VIM-4, this nanobody can be considered as an allosteric inhibitor. [less ▲]

Detailed reference viewed: 13 (6 ULg)
See detailVHHs as structural probes to investigate the mechanis of fibril formation by the amyloidogenic variants of human lysozyme
Dumont, Janice; Kumita, Janet; Menzer, Linda et al

Scientific conference (2011, August 26)

Detailed reference viewed: 20 (0 ULg)
See detailNanobodies as structural probes to investigate the mechanism of fibril formation by the amyloidogenic variants of human lysozyme
Dumont, Janice ULg; Pardon, Els; Aumont-Nicaise, Magalie et al

Poster (2011)

Six variants of human lysozyme (single-point mutations I56T, F57I, W64R, D67H and double mutations F57I/T70N, W112R/T70N) are associated with a hereditary non-neuropathic systemic amyloidose. These ... [more ▼]

Six variants of human lysozyme (single-point mutations I56T, F57I, W64R, D67H and double mutations F57I/T70N, W112R/T70N) are associated with a hereditary non-neuropathic systemic amyloidose. These proteins form extracellular amyloid fibrils that deposit in a wide range of tissues and organs such as liver, spleen and kidneys where they cause damages [1]. It was shown that the D67H and I56T mutations cause a loss in stability and more particularly a loss of global cooperativity of protein [1]. Consequently, under physiologically relevant conditions, these variants can transiently populate a partially unfolded state in which the beta-domain and the C-helix are cooperatively unfolded while the rest of the protein remains native like [1]. The formation of intermolecular interactions between the regions that are unfolded in this intermediate state is likely to be a fundamental trigger of the aggregation process that ultimately leads to the formation and deposition of fibrils in tissues. We have also shown that the binding of three variable domain of camelid antibodies or (VHHs) - raised against the wild type human lysozyme inhibit in vitro the formation of amyloid fibrils by the lysozyme variants. These three VHHs bind on different regions of lysozyme and act as amyloid fibrils inhibitor through different mechanisms [2, 3, and unpublished results]. In the present work, sixteen new VHHs specific of human lysozyme have been generated. Competition experiments have shown that they bind to five non overlapping epitopes. We have demonstrated that five of these new VHHs are able to bind lysozyme in conditions used for amyloid fibril formation, and interestingly two of them recognize two epitopes that are different from those of the three VHHs previously characterized [2, 3, and unpublished results]. The effects of these new VHHs on the properties of lysozyme variants such as activity, stability, cooperativity and aggregation will be discussed. [less ▲]

Detailed reference viewed: 45 (1 ULg)
See detailGeneration of camelid single-domain antibody fragments raised against proteins containing polyglutamine expansions
Pain, Coralie ULg; Scarafone, Natacha; Jaspar, Aurélie et al

Poster (2010, October 14)

Nine progressive neurodegenerative diseases are associated with the expansion of a polyglutamine (polyQ) tract above a threshold size (~ 35-45 residues) into nine different proteins [1]. These proteins ... [more ▼]

Nine progressive neurodegenerative diseases are associated with the expansion of a polyglutamine (polyQ) tract above a threshold size (~ 35-45 residues) into nine different proteins [1]. These proteins with expanded polyQ repeats have been found to form intranuclear amyloid-like aggregates, and the formation of these aggregates could play an important role in the pathogenesis [2-4]. The polyQ expansion is the only common feature among the proteins involved, suggesting it may be responsible for the aggregation phenomenon. Understanding the molecular mechanism by which the polyQ expansions promote aggregation is therefore crucial for the development of therapeutic strategies. The nine proteins associated with polyQ diseases are difficult to express recombinantly due to their big size and/or their insoluble character. In order to get further insights into the mechanism by which polyQ tracts promote aggregation, we have therefore decided to insert polyQ sequences into a well studied protein, the b-lactamase BlaP from B. licheniformis [5-6]. We have created chimeras containing 23, 30, 55, and 79 glutamines and we have investigated the effects of the insertions on the activity, the structure, the stability of BlaP as well as on its aggregating properties. Preliminary results indicate that BlaP is a good framework to study the molecular mechanism of aggregation associated with expanded polyglutamine tracts. On another hand, our previous work on the amyloidogenic variants of human lysozyme has shown that camelid single domain antibody fragments are very powerful structural probes to understand, at the molecular level, the mechanism of amyloid fibril formation [7]. Moreover, a recent study has suggested that expanded polyQ strectches adopt multiple conformations in solution that can be readily distinguished by monoclonal antibodies [8]. Altogether these results have encouraged us to generate VHHs against our different chimeras and we present here our preliminary results. References [1] Orr and Zoghbi (2007) Annu Rev Neurosci 30, 575-621. [2] DiFiglia et al. (1997) Science 277, 1990-1993. [3] Paulson HL (2000) Brain Pathol 10, 293-299. [4] Sanchez I. et al. (2003) Nature 421, 373-379. [5] Scarafone N. (2008) Mémoire de DEA en Sciences. Université de Liège. [6] Pain C. (2009) Mémoire de Master en Biochimie. Université de Liège. [7] Dumoulin et al. (2003) Nature 424, 783-788. [8] Legleiter J. et al. (2009) J Biol Chem 284, 21647-21648. [less ▲]

Detailed reference viewed: 24 (3 ULg)
See detailCA1838, A NANOBODY INHIBITING THE METALLO-β-LACTAMASE VIM-4.
Sohier, Jean ULg; Laurent, Clémentine ULg; Pardon, Els et al

Poster (2010)

Detailed reference viewed: 17 (16 ULg)
See detailcAbVIM4, a nanobody inhibiting the metallo-β-lactamase VIM-4
Sohier, Jean ULg; Laurent, Clémentine ULg; Pardon, Els et al

Poster (2010)

Detailed reference viewed: 11 (9 ULg)
See detailNanobodies as structural probes to investigate the mechanism of fibril formation by the amyloidogenic variants of human lysozyme.
Dumont, Janice ULg; Menzer, Linda ULg; Pardon, Els et al

Poster (2010)

Six variants of human lysozyme (single-point mutations I56T, F57I, W64R, D67H and double mutations F57I/T70N, W112R/T70N) are associated with a hereditary non-neuropathic systemic amyloidose. These ... [more ▼]

Six variants of human lysozyme (single-point mutations I56T, F57I, W64R, D67H and double mutations F57I/T70N, W112R/T70N) are associated with a hereditary non-neuropathic systemic amyloidose. These proteins form extracellular amyloid fibrils that deposit in a wide range of tissues and organs such as liver, spleen and kidneys where they cause damages [1]. It was shown that the D67H and I56T mutations cause a loss in stability and more particularly a loss of global cooperativity of protein [1]. Consequently, under physiologically relevant conditions, these variants can transiently populate a partially unfolded state in which the beta-domain and the C-helix are cooperatively unfolded while the rest of the protein remains native like [1]. The formation of intermolecular interactions between the regions that are unfolded in this intermediate state is likely to be a fundamental trigger of the aggregation process that ultimately leads to the formation and deposition of fibrils in tissues. The binding of three variable domain of camelid antibodies – also named nanobodies - (cAb-HuL 6 [2], cAb-HuL 5 and cAb-HuL 22 [3]) raised against the wild type human lysozyme inhibit in vitro the formation of amyloid fibrils by the lysozyme variants. These three nanobodies bind on different regions of lysozyme and act as Amyloid fibrils inhibitor through different mechanisms. On one hand, cAb-HuL 6 and cAb-HuL 22 stabilize the native state of the lysozyme variants thus restoring the global cooperativity characteristic of the wild-type protein. On the other, cAb-HuL 5 probably acts by binding soluble prefibrillar aggregates. In the present work, sixteen other nanobodies specific of human lysozyme have been generated. Competition experiments have shown that they bind to five non overlapping epitopes. The effects of the binding of these nanobodies on the stability of the D67H variant of human lysozyme and on its aggregation into amyloid fibrils will be discussed. [less ▲]

Detailed reference viewed: 40 (1 ULg)
Full Text
See detailCharacterisation of B1 metallo-beta-lactamase inhibition by VHHs
Sohier, Jean ULg; Laurent, Clémentine ULg; Chevigné, Andy et al

Poster (2010)

Detailed reference viewed: 38 (16 ULg)
Full Text
Peer Reviewed
See detailStructure and properties of a complex of alpha-synuclein and a single-domain camelid antibody.
De Genst, Erwin J; Guilliams, Tim; Wellens, Joke et al

in Journal of Molecular Biology (2010), 402(2), 326-43

The aggregation of the intrinsically disordered protein alpha-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinson's ... [more ▼]

The aggregation of the intrinsically disordered protein alpha-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinson's disease. The molecular mechanism of alpha-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to alpha-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric alpha-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of alpha-synuclein. The NbSyn2:alpha-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of alpha-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of alpha-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of alpha-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of alpha-synuclein aggregation in vitro and possibly in vivo. [less ▲]

Detailed reference viewed: 35 (1 ULg)