References of "Stapelfeldt, K. R"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHerschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?
Krivov, A. V.; Eiroa, C.; Löhne, T. et al

in Astrophysical Journal (2013), 772

(abridged) Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100{\mu}m or shorter. However, six out of 31 excess sources in the Herschel OTKP DUNES have ... [more ▼]

(abridged) Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100{\mu}m or shorter. However, six out of 31 excess sources in the Herschel OTKP DUNES have been seen to show significant - and in some cases extended - excess emission at 160{\mu}m, which is larger than the 100{\mu}m excess. This excess emission has been suggested to stem from debris disks colder than those known previously. Using several methods, we re-consider whether some or even all of the candidates may be associated with unrelated galactic or extragalactic emission and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the SEDs and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100{\mu}m, regardless of their material composition. To explain the dearth of small grains, we explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than kilometers in size. Thus planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached. [less ▲]

Detailed reference viewed: 8 (1 ULg)
Full Text
Peer Reviewed
See detailResolving the cold debris disc around a planet-hosting star. PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)
Liseau, R.; Eiroa, C.; Fedele, D. et al

in Astronomy and Astrophysics (2010), 518

Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions ... [more ▼]

Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q1 Eri is known to be surrounded by debris, extended on scales of 30”. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6” to 12” over the wavelength range of 60 μm to 210 μm. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q1 Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 μm, 100 μm and 160 μm reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53°. The results of image de-convolution indicate that i likely is larger than 63°, where 90° corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q1 Eri is surrounded by an about 40 AU wide ring at the radial distance of ~85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed. [less ▲]

Detailed reference viewed: 43 (3 ULg)