References of "Stam, Daphne"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Search for Worlds Like Our Own
Fridlund, Malcolm; Eiroa, Carlos; Henning, Thomas et al

in Astrobiology (2010), 10(1), 5-17

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life ... [more ▼]

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets -- particularly, their evolution, their atmospheres, and their ability to host life -- constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus 300 BC: Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist. Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts - atoms - also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning--not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than 6our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21st-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years. [less ▲]

Detailed reference viewed: 21 (6 ULg)
Full Text
See detailFirst results of the HssO key programme
Hartogh, Paul; Crovisier, Jacques; Lellouch et al

in 38th COSPAR Scientific Assembly (2010)

The HssO (Herschel solar system Observations) program aims at determining the distribution, the evolution and the origin of water in Mars, the Outer Planets, Titan, Enceladus and comets, using the three ... [more ▼]

The HssO (Herschel solar system Observations) program aims at determining the distribution, the evolution and the origin of water in Mars, the Outer Planets, Titan, Enceladus and comets, using the three Herschel instruments HIFI, PACS and SPIRE. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System materials, will be measured for the first time in a Jupiter family comet. A comparison with existing and new measurements of D/H in Oort cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in Giant Planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostics of the evolution of Mars atmosphere, will be accurately measured in H2O and CO. The role of water vapour in the atmospheric chemistry of Mars will be studied by monitoring vertical profiles of H2O and HDO and by searching for several other species (including CO and H2O isotopologues). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the Outer Planets (interplanetary dust particles, cometary impacts, and local sources). First results on comets, Mars and the outer planets will be presented. [less ▲]

Detailed reference viewed: 26 (10 ULg)