References of "Spronck, Gilles"
     in
Bookmark and Share    
Full Text
See detailInnovative semiconducting oxide materials reducing the energy footprint of buildings
Dewalque, Jennifer ULg; Maho, Anthony ULg; Spronck, Gilles ULg et al

Conference (2015, October 26)

In the current energy context, many efforts are devoted to the reduction of the energy footprint of buildings. To meet this challenge, the LCIS-GREENMAT laboratory developes a front edge research in the ... [more ▼]

In the current energy context, many efforts are devoted to the reduction of the energy footprint of buildings. To meet this challenge, the LCIS-GREENMAT laboratory developes a front edge research in the field of advanced materials associated to energy and environment, including structured materials for dye-sensitized solar cells (DSSCs) and electrochromic coatings. DSSCs have been reported by O’Regan and Grätzel in the early nineties as a very promising alternative to conventional photovoltaic silicon devices. Main benefits of these cells are their low cost as well as their mild manufacturing process. In most of the specific literature, DSSCs are made of TiO2 films prepared by doctor-blade or screen-printing of anatase nanoparticles paste. However, due to the random organization of the nanoparticles, pore accessibility by the dye and electrolyte could be incomplete. Moreover, some anatase crystallites could suffer from a lack of connectivity, leading to electron transfer issues. The strategy adopted by our group to improve photovoltaic efficiencies involves a templating-assisted process to prepare highly porous layers with well-ordered and accessible pores as well as improved crystallites connectivity. This talk especially focuses on the templating-assisted synthesis of TiO2 and ZnO semiconducting layers used as photoelectrode in DSSCs. Due to the surface area improvement as well as the perfect control of the pore organization and the pore size, the templating strategy is an effective solution to maximize the adsorption of active dye and the electrolyte infiltration inside the porous network. Besides, in the last few years, there has been increasing interest in electrochromic glazing due to its potential use as an energy-efficient component for buildings, as it could reduce considerably their CO2 emission by decreasing their energy consumption up to 30%. The crucial issues of such devices are the durability, the coloration efficiency and the reversibility upon coloration and bleaching of the electrochromic layers. In order to improve the performances of those electrochromic films, we have investigated a surfactant-assisted deposition process for WO3 layer and the insertion of lithium in the NiO layer. All films have been deposited on FTO glass substrates by ultrasonic spray pyrolysis (USP), which is a low-cost alternative to industrial vacuum processes for manufacturing high quality thin films. The presence of lithium ions in nickel oxide films has shown improved coloration efficiency compared to the undoped films. The higher active surface of surfactant-assisted tungsten oxide films has led to higher reversibility and coloration contrast. [less ▲]

Detailed reference viewed: 48 (3 ULg)
Full Text
Peer Reviewed
See detailElucidating the opto-electrical properties of solid and hollow titania scattering layers for improvement of dye-sensitized solar cells
Thalluri, Venkata Visveswara Gopala Kris; Henrist, Catherine ULg; Spronck, Gilles ULg et al

in Thin Solid Films (2015)

The light scattering method has been adapted in dye-sensitized solar cells (DSCs) for optical absorption enhancement. In DSC's, particle-size of TiO2 should be inline with the scattering wavelength range ... [more ▼]

The light scattering method has been adapted in dye-sensitized solar cells (DSCs) for optical absorption enhancement. In DSC's, particle-size of TiO2 should be inline with the scattering wavelength range. Scattering particles can be used either by forming a bilayer structure with TiO2 nanocrystalline film or into the bulk of TiO2 nanocrystalline film. For improving the DSCs performances these scattering layers aim to refract/reflect the incident light by extending the traveling distance of UV-Visible/near-IR light within the dye-sensitized TiO2 nanocrystalline film. In this work, the scattering layers with two different particle-sizes (~200 nm-solid and ~400 nm-hollow) were deposited as an additional layer on the top of dye-sensitized TiO2 nanocrystalline film and the morphological properties were studied. By using various opto-electrical characterization techniques, the influence of these scattering layers for two different classes of DSCs prepared from N3 (UV-Vis) and SQ2 (near-IR) dyes were investigated. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailImproved coloration contrast and electrochromic efficiency of tungsten oxide films thanks to a surfactant-assisted ultrasonic spray pyrolysis process
Denayer, Jessica ULg; Aubry, Philippe; Bister, Geoffroy et al

in Solar Energy Materials & Solar Cells (2014), 130

Detailed reference viewed: 81 (58 ULg)
Full Text
See detailStudies on the Influence of Different Grain-sized Titania Scattering Layers for Dye Sensitized Solar Cells
Thalluri, Venkata Visveswara Gopala Kris ULg; Henrist, Catherine ULg; Vertruyen, Bénédicte ULg et al

Poster (2013, July)

The efficiencies of dye sensitized solar cells (DSCs) are boosted up to 12% by NIR light harvesting dyes and with the usage of scattering layer in the device preparation.The importance of Titania ... [more ▼]

The efficiencies of dye sensitized solar cells (DSCs) are boosted up to 12% by NIR light harvesting dyes and with the usage of scattering layer in the device preparation.The importance of Titania scattering layers was studied as a part of this work. These scattering layers were prepared from two different grain-sizes (100 nm & 500 nm) for SQ2-NIR and N3-UV/Vis DSCs. The 100 nm grain-sized Titania paste was commercially supplied and 500 nm grain-sized Titania paste was prepared according to literature. The morphological and structural properties of these bigger grain-sized Titania layers were deliberated by using and Scanning Electron Microscope (SEM) and X-Ray diffraction (XRD) measurements. The influence of these bigger grain-sized Titania scattering layers in SQ2-NIR and N3-UV/Vis DSCs were expounded by using various electro-optical characterization techniques such as light I-V, electrochemical impedance spectroscopy (EIS) shown in Figure 1 and external quantum efficiency (EQE) measurements. The importance of understanding the influence of these bigger grain-sized scattering Titania layers could pave a way for future design and optimizing of DSCs for increasing the amount of light harvesting. [less ▲]

Detailed reference viewed: 54 (18 ULg)
Full Text
Peer Reviewed
See detailTiO2 mesoporous thin films studied by Atmospheric Ellipsometric Porosimetry: A case of contamination
Dubreuil, Olivier ULg; Dewalque, Jennifer ULg; Chene, Grégoire ULg et al

in Microporous and Mesoporous Materials (2011), 147

Anatase mesoporous TiO2 thin films are frequently prepared by surfactant templating to control porosity development and Atmospheric Ellipsometric Porosimetry is a reliable and fast technique allowing the ... [more ▼]

Anatase mesoporous TiO2 thin films are frequently prepared by surfactant templating to control porosity development and Atmospheric Ellipsometric Porosimetry is a reliable and fast technique allowing the determination of the porosity of such films. After prolonged exposition to high-vacuum (6×10-6 mbar), the films porosity exhibits a degraded behavior during porosimetric measurements, indicating a vacuum-induced modification. The main effect resulting from such exposition to high-vacuum is a wet- tability modification of the films, resulting in an increase of the hydrophobic character of the TiO2 surface. This evolution induces non-correct results in porosimetric measurements due to the fact that the contact angle parameter needed to calculate the pore size distribution is highly different from the reference films. A surface contamination explains such modifications and a restoration of the films is obtained by using ultraviolet treatment. [less ▲]

Detailed reference viewed: 135 (41 ULg)