References of "Sozzetti, A"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects
Gaia Collaboration; van Leeuwen, F.; Vallenari, A. et al

in Astronomy and Astrophysics (2017), 601

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and ... [more ▼]

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. <BR /> Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. <BR /> Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. <BR /> Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. <BR /> Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs. Tables D.1 to D.19 are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19</A> [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Summary of the astrometric, photometric, and survey properties
Gaia Collaboration; Brown, A. G. A.; Vallenari, A. et al

in Astronomy and Astrophysics (2016), 595

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR ... [more ▼]

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR /> Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. <BR /> Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. <BR /> Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr[SUP]-1[/SUP] for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr[SUP]-1[/SUP]. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR /> Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. [less ▲]

Detailed reference viewed: 31 (4 ULg)
Full Text
Peer Reviewed
See detailThe Gaia mission
Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J. et al

in Astronomy and Astrophysics (2016), 595

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept ... [more ▼]

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. <A href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A> [less ▲]

Detailed reference viewed: 54 (7 ULg)
Full Text
Peer Reviewed
See detailThe HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun
Motalebi, F.; Udry, S.; Gillon, Michaël ULg et al

in Astronomy and Astrophysics (2015), 584

We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their ... [more ▼]

We know now from radial velocity surveys and transit space missions that planets only a few times more massive than our Earth are frequent around solar-type stars. Fundamental questions about their formation history, physical properties, internal structure, and atmosphere composition are, however, still to be solved. We present here the detection of a system of four low-mass planets around the bright (V = 5.5) and close-by (6.5 pc) star HD 219134. This is the first result of the Rocky Planet Search programme with HARPS-N on the Telescopio Nazionale Galileo in La Palma. The inner planet orbits the star in 3.0935 ± 0.0003 days, on a quasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD 219134 b the nearest known transiting planet to date. From the amplitude of the radial velocity variation (2.25 ± 0.22 ms[SUP]-1[/SUP]) and observed depth of the transit (359 ± 38 ppm), the planet mass and radius are estimated to be 4.36 ± 0.44 M[SUB]⊕[/SUB] and 1.606 ± 0.086 R[SUB]⊕[/SUB], leading to a mean density of 5.76 ± 1.09 g cm[SUP]-3[/SUP], suggesting a rocky composition. One additional planet with minimum-mass of 2.78 ± 0.65 M[SUB]⊕[/SUB] moves on a close-in, quasi-circular orbit with a period of 6.767 ± 0.004 days. The third planet in the system has a period of 46.66 ± 0.08 days and a minimum-mass of 8.94 ± 1.13 M[SUB]⊕[/SUB], at 0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ± 0.11. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 ± 0.1 days). The planetary origin of the signal is, however, thepreferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 71 M[SUB]⊕[/SUB] orbits the star in 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at a distance of 2.56 AU. The photometric time series and radial velocities used in this work are available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72</A> [less ▲]

Detailed reference viewed: 25 (3 ULg)
Full Text
Peer Reviewed
See detailThe PLATO 2.0 Mission
Rauer, H.; Catala, C.; Aerts, C. et al

in Experimental Astronomy (2014)

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental ... [more ▼]

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science. [less ▲]

Detailed reference viewed: 39 (13 ULg)
Full Text
See detailDiversity among other worlds: characterization of exoplanets by direct detection (Update of a White Paper submitted to the ESA ExoPlanet Roadmap Advisory Team)
Schneider, J.; Boccaletti, A.; Aylward, A. et al

Report (2008)

The physical characterization of exoplanets will require to take spectra at several orbital positions. For that purpose, a direct imaging capability is necessary. Direct imaging requires an efficient ... [more ▼]

The physical characterization of exoplanets will require to take spectra at several orbital positions. For that purpose, a direct imaging capability is necessary. Direct imaging requires an efficient stellar suppression mechanism, associated with an ultrasmooth telescope. We show that before future large space missions (interferometer, 4-8 m class coronograph, external occulter or Fresnel imager), direct imaging of giant planets and close-by super-Earth are at the cross-road of a high scientific interest and a reasonable feasibility. The scientific interest lies in the fact that super-Earths share common geophysical attributes with Earths. They already begin to be detected by radial velocity (RV) and, together with giant planets, they have a larger area than Earths, making them detectable with a 1.5-2 m class telescope in reflected light. We propose such a (space) telescope be a first step before large direct imaging missions. [less ▲]

Detailed reference viewed: 32 (3 ULg)
Full Text
Peer Reviewed
See detailDouble-blind test program for astrometric planet detection with Gaia
Casertano, S.; Lattanzi, M. G.; Sozzetti, A. et al

in Astronomy and Astrophysics (2008), 482

Aims: The scope of this paper is twofold. First, it describes the simulation scenarios and the results of a large-scale, double-blind test campaign carried out to estimate the potential of Gaia for ... [more ▼]

Aims: The scope of this paper is twofold. First, it describes the simulation scenarios and the results of a large-scale, double-blind test campaign carried out to estimate the potential of Gaia for detecting and measuring planetary systems. The identified capabilities are then put in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets in the next decade. <BR />Methods: We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. <BR />Results: 1) Planets with astrometric signatures α≃ 3 times the assumed single-measurement error σ_ψ and period P≤ 5 yr can be detected reliably and consistently, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 15-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2≤ P≤ 9 yr, astrometric signal-to-noise ratio 2≤α/σ_ψ≤ 50, and eccentricity e≤ 0.6 are correctly identified. 4) Favorable orbital configurations (both planets with P≤ 4 yr and α/σ_ψ≥ 10, redundancy over a factor of 2 in the number of observations) have orbital elements measured to better than 10% accuracy > 90% of the time, and the value of the mutual inclination angle i_rel determined with uncertainties ≤ 10°. 5) Finally, nominal uncertainties obtained from the fitting procedures are a good estimate of the actual errors in the orbit reconstruction. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σ_ψ = 8 μas, in its unbiased and complete magnitude-limited census of planetary systems, will discover and measure several thousands of giant planets out to 3-4 AUs from stars within 200 pc, and will characterize hundreds of multiple-planet systems, including meaningful coplanarity tests. Finally, we put Gaia's planet discovery potential into context, identifying several areas of planetary-system science (statistical properties and correlations, comparisons with predictions from theoretical models of formation and evolution, interpretation of direct detections) in which Gaia can be expected, on the basis of our results, to have a relevant impact, when combined with data coming from other ongoing and future planet search programs. [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailDetection and Characterization of Extra-Solar Planets with Gaia
Lattanzi, M. G.; Casertano, S.; Jancart, Sylvie ULg et al

in O'Flaherty, K.S.; Perryman, M.A.C (Eds.) The Three-Dimensional Universe with Gaia (2005, January 01)

The scope of this paper is twofold. First, it describes the simulation scenario and the results of the large scale double-blind test campaign set-up by the Planetary System Working Group for the realistic ... [more ▼]

The scope of this paper is twofold. First, it describes the simulation scenario and the results of the large scale double-blind test campaign set-up by the Planetary System Working Group for the realistic simulation of the Gaia capabilities in detecting extra-solar planets. Present limitations and envisaged future improvements are also discussed. Then, the identified capabilities are put in context by highlighting the unique contributions that the Gaia exo-planet discoveries will be able to bring to the science of extra-solar systems of the next decade. [less ▲]

Detailed reference viewed: 7 (0 ULg)