References of "Soret, Lauriane"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Martian diffuse aurora: a model of ultraviolet and visible emissions
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Shematovich, V.I. et al

in Icarus (2017), 288

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar ... [more ▼]

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions from the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and violet auroral emissions for initial electron energies extending from 0.25 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox–Duffendack–Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb production rates of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 50-200 keV produce maximum CO2+ UVD emission below 75 km, in agreement with the MAVEN observations. We calculate the efficiency of photon production per unit precipitated electron power. The strongest emissions are the CO2+ FDB, UVD and CO Cameron bands and the oxygen mission at 297.2 nm. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below about 110 km. As a consequence, we show that the Cameron band emission is expected to peak at a higher altitude than the CO2+ UVD and FDB bands. Collisional quenching also causes the intensity ratio of the CO2+ UVD to CO Cameron bands to increase below ∼100 km in the energetic diffuse aurora. [less ▲]

Detailed reference viewed: 20 (2 ULg)
See detailThree Types of Aurora observed by MAVEN/IUVS: Implications for Mars’ upper Atmosphere Energy Budget
Connour; Schneider; Jain et al

Poster (2017, January 17)

Detailed reference viewed: 29 (4 ULg)
Full Text
See detailMARTIAN ULTRAVIOLET AURORA: RESULTS OF MODEL SIMULATIONS
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Shematovich, V.I. et al

Conference (2017, January)

We present recent modeling results based on observations performed with the UV spectrographs on board the Mars Express and MAVEN missions.Two types of aurora are discussed: the localized and transient ... [more ▼]

We present recent modeling results based on observations performed with the UV spectrographs on board the Mars Express and MAVEN missions.Two types of aurora are discussed: the localized and transient discrete aurora and the more stable diffuse aurora observed during periods of active solar periods. [less ▲]

Detailed reference viewed: 20 (0 ULg)
See detailLimb observations with NOMAD (UV,visible, IR)
Gérard, Jean-Claude ULg; Soret, Lauriane ULg

Scientific conference (2016, December)

We examine the possibilities and conditions to observe the Mars airglow and aurora (dayside and nightside) at the limb with the NOMAD instrument on board the TGO/EXOMARS orbiter.

Detailed reference viewed: 15 (0 ULg)
Full Text
See detailThe Martian diffuse aurora: Monte Carlo simulations and comparison with IUVS-MAVEN observations
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Schneider, N. et al

Conference (2016, December)

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar ... [more ▼]

A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions with the IUVS on board the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and visible auroral emissions for initial electron energies from 0.1 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox–Duffendack–Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb intensities of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 100-200 keV produce maximum CO2+ UVD emission near 75 km. We combine SWEA and SEP electron energy spectra measured during diffuse aurora to calculate the volume emission rates and compare with IUVS observations of the emission limb profiles. The strongest predicted emissions are the CO2+ FDB, UVD and the CO Cameron bands. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below ~110 km. As a consequence, we show that the CO2+ UVD to the Cameron bands ratio increases at low altitude in the energetic diffuse aurora. [less ▲]

Detailed reference viewed: 38 (7 ULg)
Full Text
See detailThe O2(a1Δ) Venus nightglow intensity: internal versus solar activity control
Soret, Lauriane ULg; Gérard, Jean-Claude ULg

Conference (2016, April)

Introduction: The O2(a1Δg) Venus nightglow emission at 1.27 μm occurs in the atmospheric region governed by the subsolar to antisolar circulation. Several studies showed that the intensity of this ... [more ▼]

Introduction: The O2(a1Δg) Venus nightglow emission at 1.27 μm occurs in the atmospheric region governed by the subsolar to antisolar circulation. Several studies showed that the intensity of this emission is highly variable on a timescale of hours. Here, we study the possible correlation between the solar flux and the O2 infrared emission using VIRTIS-VEx spectral images at 1.27 μm that has been predicted to exist by theVTGCM model calculations by Bougher and Borucki(1994). VIRTIS data: Using the entire VIRTIS-M-IR nadir database, Soret et al. (2014) generated seven statistical maps of the O2(a1Δg) emission, each containing 500 observations. The purpose was to analyze the location of the brightest spot of the emission and its variations over time. Here, we analyze the intensity of the emission over time. Several methods have been used by Soret et al., (2015) to do so (evolution of the emission maximum, evolution of the average intensity, …) Here we present the results of a new analysis using a masking technique to calculate the time evolution of the nightglow brightness. However, none of them follow the same trend over time. Solar flux data: We now focus on solar flux variations in the time of VIRTIS observations (between May 2006 and October 2008), which were collected during a deep solar minimum. We use the SOHO-CELIAS/SEM (Judge et al., 1998) EUV daily average full solar disk fluxes at 1 AU between 0.1 and 50 nm available from the Space Sciences Center of the University of Southern California. EUV0.1–50 daily average fluxes decrease from 2.6 in May 2006 to 1.9 in October 2008 at the Earth. These values have been adapted to Venus by taking into account the distance from the Sun to the planet, but also the shift in date, considering the difference in solar longitude of the two planets. Values at Venus vary from 4.4 to 3.4, which corresponds to a decrease of 10.4% of the solar flux at Venus compared to a complete solar cycle (ranging from 13.5 to 3.9) Comparison of VIRTIS and SEM datasets: The linear correlation coefficient between the solar flux and the intensity peak is found to be 0.62, which expresses the global decreasing trend for both quantities. This coefficient is not higher because internal variations of the two studied variables do not occur simultaneously. More significantly, the correlation coefficient between the solar flux and the averaged intensities is found to be 0.35, meaning that no relation-ship exists between the O2(a1Δg) brightness and the solar activity. Conclusions: Contrary to the VTGCM calculations, we do not observe here a correlation between the O2(a1Δg) brightness and the solar flux. However, VIRTIS data were acquired during a deep solar minimum and, more importantly, during a relatively stable phase of the solar activity. A high level of variability of the O2(a1Δg) emission has been detected in the same dataset from day to day though (Hueso et al., 2008; Soret et al., 2014). It thus appears that the variability is more controlled by internal than external conditions: transport appears to play a major role in the nightglow emissions than the solar activity eventually does. This conclusion is at least valid for solar minimum conditions. A space mission with global imaging capabilities over an entire solar cycle would definitely allow determining the relative role played by solar activity and internal factors. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailSPICAM observations and modeling of Mars aurorae
Soret, Lauriane ULg; Gérard, Jean-Claude ULg; Libert, Ludivine ULg et al

in Icarus (2016), 264

Martian aurorae have been detected with the SPICAM instrument on board Mars Express both in the nadir and the limb viewing modes. In this study, we focus on three limb observations to determine both the ... [more ▼]

Martian aurorae have been detected with the SPICAM instrument on board Mars Express both in the nadir and the limb viewing modes. In this study, we focus on three limb observations to determine both the altitudes and the intensities of the auroral emissions. The CO (a3P–X1R) Cameron bands between 190 and 270 nm, the CO Fourth Positive system (CO 4P) between 135 and 170 nm, the CO2+ doublet at 289 nm, the OI at 297.2 nm and the 130.4 nm OI triplet emissions have been identified in the spectra and in the time variations of the signals. The intensities of these auroral emissions have been quantified and the altitude of the strongest emission of the CO Cameron bands has been estimated to be 137 ± 27 km. The locations of these auroral events have also been determined and correspond to the statistical boundary of open-closed magnetic field lines, in cusp-like structures. The observed altitudes of the auroral emissions are reproduced by a Monte-Carlo model of electron transport in the Martian thermosphere for mono-energetic electrons between 40 and 200 eV. No correlation between electron fluxes measured in the upper thermosphere and nadir auroral intensity has been found. Here, we simulate auroral emissions observed both at the limb and at the nadir using electron energy spectra simultaneously measured with the ASPERA-3/ELS instrument. The simulated altitudes are in very good agreement with the observations. We find that predicted vertically integrated intensities for the various auroral emissions are overestimated, probably as a consequence of the inclination and curvature of the magnetic field line threading the aurora. However, the relative brightness of the CO and CO2+ emissions is in good agreement with the observations. [less ▲]

Detailed reference viewed: 86 (28 ULg)
Full Text
Peer Reviewed
See detailIs the O2(a1Δg) Venus nightglow emission controlled by solar activity ?
Soret, Lauriane ULg; Gérard, Jean-Claude ULg

in Icarus (2015), 262

Several past studies showed that the O2(a1Δg) Venus nightglow emission at 1.27 μm is highly variable on a timescale of hours. We examine whether the intensity of this emission shows a more global trend ... [more ▼]

Several past studies showed that the O2(a1Δg) Venus nightglow emission at 1.27 μm is highly variable on a timescale of hours. We examine whether the intensity of this emission shows a more global trend linked to solar activity. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
See detailMars nighttime aurora
European Space Agency, ESA/ATG medialab; Gérard, Jean-Claude ULg; Soret, Lauriane ULg

E-print/Working paper (2015)

Press release by the European Space Agency (ESA) on the occasion of the publication in two journals of the peer-reviewed literature

Detailed reference viewed: 26 (1 ULg)
See detailObservations of Mars aurorae
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Libert, Ludivine ULg et al

Conference (2015, September)

We present recent results obtained by combining remote sensing observations and in situ measurements of the Martian aurora made from Mars Express.

Detailed reference viewed: 40 (10 ULg)
Full Text
See detailTwinkling Lights in the Nightside Upper Atmosphere: How Nightglow Contributes to our Understanding of Global Dynamics
Brecht, Amanda; Bougher, S.; Stiepen, Arnaud ULg et al

Conference (2015, September)

Upper atmospheres of planets continuously emit photons in the UV, Visible, and IR regions of the electromagnetic spectrum. Some of these emissions are classified as airglow, which includes dayglow and ... [more ▼]

Upper atmospheres of planets continuously emit photons in the UV, Visible, and IR regions of the electromagnetic spectrum. Some of these emissions are classified as airglow, which includes dayglow and nightglow. There are several mechanisms to create these emissions, but this presentation will focus on nightglow emissions resulting from photochemistry of neutral components. These neutral components originate on the dayside and are transported from the dayside to the nightside of a planet, where they subsequently undergo chemical reactions yielding nightglow. Nightglow emissions serve as effective tracers for planetary middle and upper atmosphere global wind systems due to their variable peak brightness and spatial distributions. The main planetary focus for this presentation will be on Mars and Venus’ atmospheres, due to the similar chemical constituents which populate their upper atmospheres. Currently, NO UV nightglow has been observed (e.g. Venus Express, Mars Express) on both Venus and Mars, while O2 IR nightglow has only been observed on Venus but is predicted to be seen on Mars. The observations show variations in time and location (latitude, local time, and altitude). The locations of the maximum nightglow intensities on each planet are different, but are supportive of the general picture of these two planet’s global circulation patterns. Model implications for both nightglows on both planets can provide valuable insight and understanding of the dynamical and chemical processes creating the nightglow emission variability. Two three-dimensional general circulation models will be utilized: the Venus Thermospheric General Circulation Model (VTGCM) and the Mars Global Ionosphere-Thermosphere Model (MGITM). The model output will be compared to nightglow datasets for each planet individually and planet to planet, to contrast the variations of the nightglow features and the underlying drivers for those variations. [less ▲]

Detailed reference viewed: 48 (5 ULg)
Full Text
See detailThe Hydroxyl Nightglow Emissions on Earth, Venus and Mars
Soret, Lauriane ULg; Gérard, Jean-Claude ULg; Piccioni, G. et al

Poster (2015, August)

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailTerrestrial OH nightglow measurements during the Rosetta flyby
Migliorini, A.; Gérard, Jean-Claude ULg; Soret, Lauriane ULg et al

in Geophysical Research Letters (2015), 42

We present a study of the terrestrial hydroxyl nightglow emissions observed with the Visible and Infrared Thermal Imaging Spectrometer on board the Rosetta mission. During these observations, the OH Δv  ... [more ▼]

We present a study of the terrestrial hydroxyl nightglow emissions observed with the Visible and Infrared Thermal Imaging Spectrometer on board the Rosetta mission. During these observations, the OH Δv = 1 and 2 sequences were measured simultaneously. This allowed investigating the relative population of the v = 1 to 9 vibrational levels by using both sequences. In particular, the relative population of the vibrational level v = 1 is determined for the first time from observations. The vibrational population decreases with increasing vibrational quantum number. A good agreement is found with a recent model calculation assuming multiquantum relaxation for OH(v) quenching by O2 and single-quantum relaxation for OH(v) by N2. [less ▲]

Detailed reference viewed: 47 (4 ULg)
See detailVenus nightglow intensity and solar activity: any correlation?
Soret, Lauriane ULg; Gérard, Jean-Claude ULg

Conference (2015, May 26)

We examine if any correlation is observed between the brightness of the O2 nightside airglow and the EUV solar irradiance using the full database of VIRTIS IR images. We conclude that, as was the case for ... [more ▼]

We examine if any correlation is observed between the brightness of the O2 nightside airglow and the EUV solar irradiance using the full database of VIRTIS IR images. We conclude that, as was the case for the NO airglow observed during the Pioneer Venus mission, no response to solar activity is observed. [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailThe EChO science case
Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul et al

in Experimental Astronomy (2015), 1502

The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general ... [more ▼]

The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets. Placing the satellite at L2 provides a cold and stable thermal environment, as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. A 1m class telescope is sufficiently large to achieve the necessary spectro-photometric precision. The spectral coverage (0.5-11 micron, goal 16 micron) and SNR to be achieved by EChO, thanks to its high stability and dedicated design, would enable a very accurate measurement of the atmospheric composition and structure of hundreds of exoplanets. [less ▲]

Detailed reference viewed: 78 (45 ULg)
Full Text
Peer Reviewed
See detailConcurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express
Gérard, Jean-Claude ULg; Soret, Lauriane ULg; Libert, Ludivine ULg et al

in Journal of Geophysical Research. Space Physics (2015)

The database of the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument between late January 2004 and Mars 2014 has been searched to identify signatures ... [more ▼]

The database of the Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument between late January 2004 and Mars 2014 has been searched to identify signatures of CO Cameron and CO<inf>2</inf>+ doublet ultraviolet auroral emissions. This study has almost doubled the number of auroral detections based on SPICAM spectra. Auroral emissions are located in the vicinity of the statistical boundary between open and closed field lines. From a total of 113 nightside orbits with SPICAM pointing to the nadir in the region of residual magnetic field, only nine nightside orbits show confirmed auroral signatures, some with multiple detections along the orbital track, leading to a total of 16 detections. The mean energy of the electron energy spectra measured during concurrent Analyzer of Space Plasma and Energetic Atoms/Electron Spectrometer observations ranges from 150 to 280eV. The ultraviolet aurora may be displaced poleward or equatorward of the region of enhanced downward electron energy flux by several tens of seconds and shows no proportionality with the electron flux at the spacecraft altitude. The absence of further UV auroral detection in regions located along crustal magnetic field structures where occasional aurora has been observed indicates that the Mars aurora is a time-dependent feature. These results are consistent with the scenario of acceleration of electrons by transient parallel electric field along semiopen magnetic field lines. © 2015. American Geophysical Union. All Rights Reserved. [less ▲]

Detailed reference viewed: 56 (19 ULg)
Full Text
See detailVIRTIS-M-IR nadir and limb observations: variability of the O2(a1∆) nightglow spots
Soret, Lauriane ULg; Gérard, Jean-Claude ULg; Piccioni, Giuseppe et al

in EPSC2014, Vol. 9 (2014, September)

Individual nadir and limb VIRTIS-M-IR at 1.27 μm show that the O2(a1∆) nightglow emission is highly variable. This variability is observed spatially, but also in term of intensity and altitude of the ... [more ▼]

Individual nadir and limb VIRTIS-M-IR at 1.27 μm show that the O2(a1∆) nightglow emission is highly variable. This variability is observed spatially, but also in term of intensity and altitude of the emitting layer over time. Apparent wind velocities have been deduced from the nadir observations, as well as the e-folding times. Limb observations show that an increase of the emitting layer altitude is observed near the cold collar region. [less ▲]

Detailed reference viewed: 26 (3 ULg)
See detailTerrestrial OH nightglow measurements during the Rosetta flyby
Migliorini, A.; Gérard, Jean-Claude ULg; Soret, Lauriane ULg et al

Conference (2014, August)

During the Rosetta travel to the comet P67, the VIRTIS instrument on board the spacecraft acquired unique images of the Earth in the 1.0-5.1 μm simultaneously. These allowed to investigate the nightglow ... [more ▼]

During the Rosetta travel to the comet P67, the VIRTIS instrument on board the spacecraft acquired unique images of the Earth in the 1.0-5.1 μm simultaneously. These allowed to investigate the nightglow observed spectrum and infer the relative OH populations of levels from 1 to 9. The values are reported in the table. The results are in good agreement with the model from GRANADA code (Kaufmann et al., 2008) for the conditions of a midlatitude night atmosphere. [less ▲]

Detailed reference viewed: 21 (2 ULg)
Full Text
Peer Reviewed
See detailTime variations of O2(a1Delta) nightglow spots on the Venus nightside and dynamics of the upper mesosphere
Soret, Lauriane ULg; Gérard, Jean-Claude ULg; Piccioni, Giuseppe et al

in Icarus (2014), 237

The dynamical regime of the Venus upper atmosphere is mainly decomposed into three regions. The first one, located below 65 km of altitude is governed by the retrograde superrotational zonal (RSZ ... [more ▼]

The dynamical regime of the Venus upper atmosphere is mainly decomposed into three regions. The first one, located below 65 km of altitude is governed by the retrograde superrotational zonal (RSZ) circulation. The second region above 130 km is dominated by the subsolar to antisolar (SS–AS) circulation. The dynamics of the transition region in between are still not fully understood. However, the O2(a1D) nightglow emission at 1.27 lm, whose emitting layer is located at 96 km, can be used as a tracer of the dynamics in this transition region and the imaging spectrometer VIRTIS-M on board Venus Express, orbiting Venus since April 2006, acquired a large amount of nadir observations at this wavelength. Several previous studies showed that the O2(a1D) nightglow emission is statistically located near the antisolar point. In this study, individual VIRTIS-M nadir observations have been analyzed to investigate the variability of the phenomenon. Bright patches of 1.27 lm airglow have been extracted from every observation. It appears that the location of the bright patch is highly variable, even though the brightest patches occur near the antisolar point. Nadir observations have also been divided into time series, allowing generating animations to follow the intensity and the displacement of bright patches over time. Apparent wind velocities and characteristic decay/rise times and have been deduced from these time series. The speed of the displacements varies from 0 up to 213 m s 1, with a mean value of 54 m s 1. Owing to the high variability of the direction of the displacements both in the short and the long terms, no clear trend of a global motion at 96 km can be deduced from these observations. The mean decay time is 750 min while the mean rise time is 1550 min. The decay time can be explained as a combination of radiative decay and atomic oxygen transport. [less ▲]

Detailed reference viewed: 20 (9 ULg)