References of "Sonan, G"
     in
Bookmark and Share    
Full Text
See detailAdaptation strategies and uses of cold adapted enzymes in biotechnological processes
Gerday, Charles ULg; D'Amico, Salvino ULg; Collins, T. et al

in JAMSTEC ERC (Ed.) Proceedings of the International Symposium on Extremophiles and their Applications 2005 (2007)

Detailed reference viewed: 23 (0 ULg)
Full Text
Peer Reviewed
See detailExtreme catalysts from low-temperature environments
Hoyoux, A.; Blaise, Vinciane ULg; Collins, T. et al

in Journal of Bioscience & Bioengineering (2004), 98(5), 317-330

Cold-loving or psychrophilic organisms are widely distributed in nature as a large part of the earth's surface is at temperatures around 0 degrees C. To maintain metabolic rates and to prosper in cold ... [more ▼]

Cold-loving or psychrophilic organisms are widely distributed in nature as a large part of the earth's surface is at temperatures around 0 degrees C. To maintain metabolic rates and to prosper in cold environments, these extremophilic organisms have developed a vast array of adaptations. One main adaptive strategy developed in order to cope with the reduction of chemical reaction rates induced by low temperatures is the synthesis of cold-adapted or psychrophilic enzymes. These enzymes are characterized by a high catalytic activity at low temperatures associated with a low thermal stability. A study of protein adaptation strategies suggests that the high activity of psychrophilic enzymes could be achieved by the destabilization of the active site, allowing the catalytic center to be more flexible at low temperatures, whereas other protein regions may be destabilized or as rigid as their mesophilic counterparts. Due to these particular properties, psychrophilic enzymes offer a high potential not only for fundamental research but also for biotechnological applications. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
Peer Reviewed
See detailA perspective on cold enzymes: Current knowledge and frequently asked questions
Marx, J. C.; Blaise, Vinciane ULg; Collins, T. et al

in Cellular and Molecular Biology (2004), 50(5), 643-655

Studies on psychrophilic enzymes to determine the structural features important for cold-activity have attracted increased attention in the last few years. This enhanced interest is due to the attractive ... [more ▼]

Studies on psychrophilic enzymes to determine the structural features important for cold-activity have attracted increased attention in the last few years. This enhanced interest is due to the attractive properties of such proteins, i.e. a high specific activity and a low thermal stability, and thus, these enzymes constitute a tremendous potential for fundamental research and biotechnological applications. This review examines the impact of low temperatures on life, the diversity of adaptation to counteract these effects and gives an overview of the features proposed to account for low thermal stability and cold-activity, following the chronological order of the catalytic cycle phases. Moreover, we present an overview of recent techniques used in the analysis of the flexibility of a protein structure which is an important concept in cold-adaptation; an overview of biotechnological potential of psychrophilic enzymes and finally, a few frequently asked questions about cold-adaptation and their possible answers. [less ▲]

Detailed reference viewed: 36 (2 ULg)
Full Text
Peer Reviewed
See detailSome like it cold: biocatalysis at low temperatures
Georlette, D.; Blaise, Vinciane ULg; Collins, T. et al

in FEMS Microbiology Reviews (2004), 28(1), 25-42

In the last few years, increased attention has been focused on a class of organisms called psychrophiles. These organisms, hosts of permanently cold habitats, often display metabolic fluxes more or less ... [more ▼]

In the last few years, increased attention has been focused on a class of organisms called psychrophiles. These organisms, hosts of permanently cold habitats, often display metabolic fluxes more or less comparable to those exhibited by mesophilic organisms at moderate temperatures. Psychrophiles have evolved by producing, among other peculiarities, "cold-adapted" enzymes which have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. Thermal compensation in these enzymes is reached, in most cases, through a high catalytic efficiency associated, however, with a low thermal stability. Thanks to recent advances provided by X-ray crystallography, structure modelling, protein engineering and biophysical studies, the adaptation strategies are beginning to be understood. The emerging picture suggests that psychrophilic enzymes are characterized by an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. Due to their attractive properties, i.e., a high specific activity and a low thermal stability, these enzymes constitute a tremendous potential for fundamental research and biotechnological applications. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailExpression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis
Violot, S.; Haser, R.; Sonan, G. et al

in Acta Crystallographica Section D-Biological Crystallography (2003), 59(Part 7), 1256-1258

The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies ... [more ▼]

The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of the cold adaptation and the high catalytic efficiency of the enzyme at low and moderate temperatures. The catalytic core domain of the psychrophilic cellulase CelG from P. haloplanktis has been expressed, purified and crystallized and a complete diffraction data set to 1.8 Angstrom has been collected. The space group was found to be P2(1)2(1)2(1), with unit-cell parameters a = 135.1, b = 78.4, c = 44.1 Angstrom. A molecular-replacement solution, using the structure of the mesophilic counterpart Cel5A from Erwinia chrysanthemi as a search model, has been found. [less ▲]

Detailed reference viewed: 23 (1 ULg)
See detailLife in the cold: psychrophilic enzymes
Collins, T.; Claverie, P.; D'Amico, Salvino ULg et al

in Recent Res. Devl. Proteins vol. 1 (2002)

Detailed reference viewed: 29 (2 ULg)
Full Text
Peer Reviewed
See detailDid Psychrophilic Enzymes Really Win the Challenge?
Zecchinon, Laurent ULg; Claverie, P.; Collins, T. et al

in Extremophiles : Life Under Extreme Conditions (2001), 5(5), 313-21

Organisms living in permanently cold environments, which actually represent the greatest proportion of our planet, display at low temperatures metabolic fluxes comparable to those exhibited by mesophilic ... [more ▼]

Organisms living in permanently cold environments, which actually represent the greatest proportion of our planet, display at low temperatures metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. They produce cold-evolved enzymes partially able to cope with the reduction in chemical reaction rates and the increased viscosity of the medium induced by low temperatures. In most cases, the adaptation is achieved through a reduction in the activation energy, leading to a high catalytic efficiency, which possibly originates from an increased flexibility of either a selected area of or the overall protein structure. This enhanced plasticity seems in return to be responsible for the weak thermal stability of cold enzymes. These particular properties render cold enzymes particularly useful in investigating the possible relationships existing between stability, flexibility, and specific activity and make them potentially unrivaled for numerous biotechnological tasks. In most cases, however, the adaptation appears to be far from being fully achieved. [less ▲]

Detailed reference viewed: 22 (0 ULg)