References of "Smith, M"
     in
Bookmark and Share    
See detailGaia spectroscopy: processing, performances and scientific returns
Katz, D.; Cropper, M.; Meynadier, F. et al

in EAS Publication Series (2011, February 01)

During the five years of the mission, the Gaia spectrograph, the Radial Velocity Spectrometer (RVS) will repeatedly survey the celestial sphere down to magnitude V ~ 17-18. This talk presents: (i) the ... [more ▼]

During the five years of the mission, the Gaia spectrograph, the Radial Velocity Spectrometer (RVS) will repeatedly survey the celestial sphere down to magnitude V ~ 17-18. This talk presents: (i) the system which is currently developed within the Gaia Data Processing and Analysis Consortium (DPAC) to reduce and calibrate the spectra and to derive the radial and rotational velocities, (ii) the RVS expected performances and (iii) scientific returns. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailStructural, Magnetic and Mössbauer Spectral Study of the Electronic Spin-state Transition in {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2
Reger, Daniel; Elgin, J.; Foley, E. et al

in Inorganic Chemistry (2009), 48

The complex {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2 (pz = pyrazolyl ring) has been prepared by the reaction of HC(3-Mepz)2(5-Mepz) with Fe(BF4)2·6H2O. The solid state structures obtained at 294 and 150 K show a ... [more ▼]

The complex {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2 (pz = pyrazolyl ring) has been prepared by the reaction of HC(3-Mepz)2(5-Mepz) with Fe(BF4)2·6H2O. The solid state structures obtained at 294 and 150 K show a distorted iron(II) octahedral N6 coordination environment with the largest deviations arising from the restrictions imposed by the chelate rings. At 294 K the complex is predominately high-spin with Fe–N bond distances averaging 2.14 Å, distances that are somewhat shorter than expected for a purely high-spin iron(II) complex because of the presence of an admixture of ca. 70 (I get 80 from both mag and X-ray, 3/15, where 3 is the subtraction of 2.14 and 2.17 and 15 1.99 and 2.14 and from Figure 3b) percent high-spin and 30 (20) percent low-spin iron(II). At 294 K the twisting of the pyrazolyl rings from the ideal C3v symmetry averages only 2.2o, a much smaller twist than has been observed previously in similar complexes. At 150 K the Fe–N bond distances average 1.99 Å, indicative of an almost fully low-spin iron(II) complex; the twist angle is only 1.3o, as expected for a complex with these Fe–N bond distances. The magnetic properties show that the complex undergoes a gradual change from low-spin iron(II) below 85 K to high-spin iron(II) at 400 K. The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin iron(II) complex but, upon further warming, the iron(II) begins to undergo spin-state relaxation on the Mössbauer time scale such that, at 155 and 315 K, the complex is 7.5 and 65 percent high-spin in the absence of any adjustment for the differing low-spin and high-spin recoil-free fractions. I would replace the previous sentence with the red. I see no reason to give the % from the Mössbauer in the abstract as it is likely a bit low as discussed in detail – neither the mag data nor X-ray data have the recoil issue. The last sentence in the abstract is the key information. OK The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin-iron(II) complex but, upon further warming above 85 K the iron(II) begins to undergo spin-state relaxation between the low- and high-spin forms on the Mössbauer time scale. At 155 and 315 K the complex exhibits spin-state relaxation rates of 0.36 and 7.38 MHz, respectively, and an Arrhenius plot of the logarithm of the relaxation rate yields an activation energy of 670 ± 40 cm–1 for the spin-state relaxation. [less ▲]

Detailed reference viewed: 13 (0 ULg)