References of "Sluse, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMicrolensing of the broad-line region in the quadruply imaged quasar HE0435-1223
Braibant, Lorraine ULg; Hutsemekers, Damien ULg; Sluse, D. et al

in Astronomy and Astrophysics (2014), 565

Using infrared spectra of the z = 1.693 quadruply lensed quasar HE0435-1223 acquired in 2009 with the spectrograph SINFONI at the ESO Very Large Telescope, we have detected a clear microlensing effect in ... [more ▼]

Using infrared spectra of the z = 1.693 quadruply lensed quasar HE0435-1223 acquired in 2009 with the spectrograph SINFONI at the ESO Very Large Telescope, we have detected a clear microlensing effect in images A and D. While microlensing affects the blue and red wings of the Hα line profile in image D very differently, it de-magnifies the line core in image A. The combination of these different effects sets constraints on the line-emitting region; these constraints suggest that a rotating ring is at the origin of the Hα line. Visible spectra obtained in 2004 and 2012 indicate that the MgII line profile is microlensed in the same way as the Hα line. Our results therefore favour flattened geometries for the low-ionization line-emitting region, for example, a Keplerian disk. Biconical models cannot be ruled out but require more fine-tuning. Flux ratios between the different images are also derived and confirm flux anomalies with respect to estimates from lens models with smooth mass distributions. Based on observations made with the ESO-VLT, Paranal, Chile; Proposal 084.B-0013 (PI: Rix).Tables 2, 3 and Appendix A are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201423633/olm">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 11 (6 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL XIII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231
Tewes, M.; Courbin, F.; Meylan, G. et al

in Astronomy and Astrophysics (2013)

We present the results from 9 years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R band light curves of the 4 individual images of the quasar are obtained using ... [more ▼]

We present the results from 9 years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R band light curves of the 4 individual images of the quasar are obtained using deconvolution photometry, for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measure these delays for all possible pairs of quasar images, while always processing the 4 light curves simultaneously. For all three methods, the delays between the 3 close images A, B and C are compatible with being 0, while we measure the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1 sigma), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time delay measurement methods yield compatible results when applied to subsets of the data. [less ▲]

Detailed reference viewed: 15 (5 ULg)
Full Text
Peer Reviewed
See detailMicrolensing of the broad line region in 17 lensed quasars
Sluse, D.; Hutsemekers, Damien ULg; Courbin, F. et al

in Astronomy and Astrophysics (2012), 544

When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting ... [more ▼]

When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars with bolometric luminosities between 10[SUP]44.7 - 47.4[/SUP] erg/s and black hole masses 10[SUP]7.6 - 9.8[/SUP] M[SUB]&sun;[/SUB]. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a simple spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common emission lines in our spectra (C III] and Mg II) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies. Based on observations made with the ESO-VLT Unit Telescope # 2 Kueyen (Cerro Paranal, Chile; Proposals 074.A-0563, 075.A-0377, 077.A-0155, PI: G. Meylan).Figure 1 and the new spectra presented in this paper are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A62">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A62</A> and via the German virtual observatory <A href="http://dc.g-vo.org/mlqso/q/web/form">http://dc.g-vo.org/mlqso/q/web/form</A>Appendices are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 36 (4 ULg)
Full Text
See detailSpectra of 13 lensed quasars (Sluse+, 2012)
Sluse, D.; Hutsemekers, Damien ULg; Courbin, F. et al

Textual, factual or bibliographical database (2012)

Extracted flux calibrated spectra of 13 lensed quasars following the methodology described in Sect. 2.1. of the oaoer. The data were obtained with the FORS spectrograph at VLT in multi-object spectroscopy ... [more ▼]

Extracted flux calibrated spectra of 13 lensed quasars following the methodology described in Sect. 2.1. of the oaoer. The data were obtained with the FORS spectrograph at VLT in multi-object spectroscopy mode. The typical wavelength coverage is from 4200 to 8200Å. The data concern the following objects: HE0047-1756 (HE0047), Q0142-100 (Q0142), SDSSJ0246-0825 (SDSS0246), HE0435-1223 (HE0435), SDSSJ0806+2006 (SDSS0806), FBQ0951+2635 (FBQ0951), BRI0952-0115 (BRI0952), SDSSJ1138+0314 (J1138), J1226-0006 (J1226), SDSSJ1335+0118 (J1335), Q1355-2257 (Q1355), WFI2033-4723 (WFI2033), and HE2149-2745 (HE2149). For each object, we provide the 1D flux calibrated spectrum of the 2 individual images in the slit. In addition, we also provide the 2D reduced spectrum and corresponding 1σ error frame (corresponding files are named "objectname[SUB]data" and "objectname[/SUB]err"), and the 2D processed spectra associated to the deconvolution, as shown in Fig.1 of the paper. These processed 2D spectra are the deconvolved frame ("[SUB]dec"), the extended component of the flux emission ("[/SUB]ext") and the residual frame in σ units ("_res") corresponding to panel (b), (c) and (d) of Fig.1. A pdf file file similar to Fig.1 is also provided for each object. (4 data files). [less ▲]

Detailed reference viewed: 21 (0 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies
Sluse, D.; Chantry, Virginie ULg; Magain, Pierre ULg et al

in Astronomy and Astrophysics (2012), 538

Gravitationally lensed quasars can be used as powerful cosmological and astrophysical probes. We can (i) infer the Hubble constant H0 based on the so-called time-delay technique, (ii) unveil substructures ... [more ▼]

Gravitationally lensed quasars can be used as powerful cosmological and astrophysical probes. We can (i) infer the Hubble constant H0 based on the so-called time-delay technique, (ii) unveil substructures along the line-of-sight toward distant galaxies, and (iii) compare the shape and the slope of baryons and dark matter distributions in the inner regions of galaxies. To reach these goals, we need high-accuracy astrometry of the quasar images relative to the lensing galaxy and morphology measurements of the lens. In this work, we first present new astrometry for 11 lenses with measured time delays, namely, JVAS B0218+357, SBS 0909+532, RX J0911.4+0551, FBQS J0951+2635, HE 1104-1805, PG 1115+080, JVAS B1422+231, SBS 1520+530, CLASS B1600+434, CLASS B1608+656, and HE 2149-2745. These measurements proceed from the use of the Magain-Courbin-Sohy (MCS) deconvolution algorithm applied in an iterative way (ISMCS) to near-IR HST images. We obtain a typical astrometric accuracy of about 1-2.5 mas and an accurate shape measurement of the lens galaxy. Second, we combined these measurements with those of 14 other lensing systems, mostly from the COSMOGRAIL set of targets, to present new mass models of these lenses. The modeling of these 25 gravitational lenses led to the following results: 1) in four double-image quasars (HE0047-1746, J1226-006, SBS 1520+530, and HE 2149-2745), we show that the influence of the lens environment on the time delay can easily be quantified and modeled, hence putting these lenses with high priority for time-delay determination; 2) for quadruple-image quasars, the difficulty often encountered in reproducing the image positions to milli-arcsec accuracy (astrometric anomaly problem) is overcome by explicitly including the nearest visible galaxy/satellite in the lens model. However, one anomalous system (RXS J1131-1231) does not show any luminous perturber in its vicinity, and three others (WFI 2026-4536, WFI 2033-4723, and B2045+265) have problematic modeling. These four systems are the best candidates for a pertubation by a dark matter substructure along the line-of-sight; 3) we revisit the correlation between the position angle (PA) and ellipticity of the light and of the mass distribution in lensing galaxies. As in previous studies, we find a significant correlation between the PA of the light and of the mass distributions. However, in contrast with these same studies, we find that the ellipticity of the light and of the mass also correlate well, suggesting that the overall spatial distribution of matter is not very different from the baryon distribution in the inner ~5 kpc of lensing galaxies. This offers a new test for high-resolution hydrodynamical simulations. Based on observations made with the NASA/ESA HST Hubble Space Telescope by the CfA-Arizona Space Telescope Lens Survey (CASTLeS) collaboration, obtained from the data archive at the Space Science Institute, which is operated by AURA, the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
See detailProbing the inner structure of distant AGNs with gravitational lensing
Sluse, D.; Hutsemekers, Damien ULg; Courbin, F. et al

in Proceedings of Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation. Proceedings of Science, PoS (Seyfert 2012) 057 (2012)

Microlensing is a powerful technique which can be used to study the continuum and the broad line emitting regions in distant AGNs. After a brief description of the methods and required data, we present ... [more ▼]

Microlensing is a powerful technique which can be used to study the continuum and the broad line emitting regions in distant AGNs. After a brief description of the methods and required data, we present recent applications of this technique. We show that microlensing allows one to measure the temperature profile of the accretion disc, estimate the size and study the geometry of the region emitting the broad emission lines. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223
Courbin, F.; Chantry, Virginie ULg; Revaz, Y. et al

in Astronomy and Astrophysics (2011), 536

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010 ... [more ▼]

We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured ΔtBC = 7.8 ± 0.8 days, ΔtBD = -6.5 ± 0.7 days and ΔtCD = -14.3 ± 0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fb, in the Einstein radius. We measured fb = 0.65-0.10+0.13 if the lensing galaxy has a Salpeter IMF and fb = 0.45-0.07+0.04 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, σap = 222 ± 34 km s-1. We used fb and σap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solved the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on fb and σap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with χ2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine ourconstraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object. Based on observations made with the 1.2 m Euler Swiss Telescope, the 1.5 m telescope of Maidanak Observatory in Uzbekistan, and with the 1.2 m Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The NASA/ESA Hubble Space Telescope data was obtained from the data archive at the Space Telescope Science Institute, which is operated by AURA, the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555.Light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/536/A53 [less ▲]

Detailed reference viewed: 34 (12 ULg)
Full Text
See detailLarge-Scale Alignments of Quasar Polarization Vectors: Evidence at Cosmological Scales for Very Light Pseudoscalar Particles Mixing with Photons ?
Hutsemekers, Damien ULg; Payez, Alexandre ULg; Cabanac, R et al

in Bastien, Pierre (Ed.) Astronomical Polarimetry 2008: Science from Small to Large Telescopes. ASPC 449 (2011, November 01)

Based on a sample of 355 quasars with significant optical polarization, we found that quasar polarization vectors are not randomly oriented over the sky as naturally expected. The probability that the ... [more ▼]

Based on a sample of 355 quasars with significant optical polarization, we found that quasar polarization vectors are not randomly oriented over the sky as naturally expected. The probability that the observed distribution of polarization angles is due to chance is lower than 0.1%. The polarization vectors of the light from quasars are aligned although the sources span huge regions of the sky (˜ 1 Gpc). Groups of quasars located along similar lines of sight but at different redshifts (typically z ≍ 0.5 and z ≍ 1.5) are characterized by different preferred directions of polarization. These characteristics make the observed alignment effect difficult to explain in terms of a local contamination by interstellar polarization in our Galaxy. Interpreted in terms of a cosmological-size effect, we show that the dichroism and birefringence predicted by a mixing between photons and very light pseudoscalar particles within a magnetic field can qualitatively reproduce the observations. We find that circular polarization measurements could help constrain this mechanism. [less ▲]

Detailed reference viewed: 62 (31 ULg)
Full Text
Peer Reviewed
See detailZooming into the broad line region of the gravitationally lensed quasar Q2237+0305 = the Einstein Cross: III. Determination of the size and structure of the CIV and CIII] emitting regions using microlensing
Sluse, D.; Schmidt, R.; Courbin, F. et al

in Astronomy and Astrophysics (2011), 528

Aims: We aim to use microlensing taking place in the lensed quasar Q2237+0305 to study the structure of the broad line region and measure the size of the region emitting the CIV and CIII] lines. Methods ... [more ▼]

Aims: We aim to use microlensing taking place in the lensed quasar Q2237+0305 to study the structure of the broad line region and measure the size of the region emitting the CIV and CIII] lines. Methods: Based on 39 spectrophotometric monitoring data points obtained between Oct. 2004 and Dec. 2007, we derive lightcurves for the CIV and CIII] emission lines. We use three different techniques to analyse the microlensing signal. Different components of the lines (narrow, broad and very broad) are identified and studied. We build a library of simulated microlensing lightcurves which reproduce the signal observed in the continuum and in the lines provided only the source size is changed. A Bayesian analysis scheme is then developed to derive the size of the various components of the BLR. Results: 1. The half-light radius of the region emitting the CIV line is found to be R_CIV ~ 66^{+110}_{-46} lt-days = 0.06^{+0.09}_{-0.04} pc = 1.7^{+2.8}_{-1.1} 10^17 cm (at 68.3% CI). Similar values are obtained for CIII]. Relative sizes of the V-band continuum and of the carbon line emitting regions are also derived with median values of R(line)/R(cont) in the range [4,29], depending of the FWHM of the line component. 2. The size of the CIV emitting region agrees with the Radius-Luminosity relationship derived from reverberation mapping. Using the virial theorem we derive the mass of the black hole in Q2237+0305 to be M_BH ~ 10^{8.3+/-0.3} M_sun. 3. We find that the CIV and CIII] lines are produced in at least 2 spatially distinct regions, the most compact one giving rise to the broadest component of the line. The broad and narrow line profiles are slightly different for CIV and CIII]. 4. Our analysis suggests a different structure of the CIV and FeII+III emitting regions, with the latter being produced in the inner part of the BLR or in a less extended emitting region than CIV. [less ▲]

Detailed reference viewed: 31 (7 ULg)
Full Text
Peer Reviewed
See detailOptical circular polarization in quasars
Hutsemekers, Damien ULg; Borguet, Benoît ULg; Sluse, D. et al

in Astronomy and Astrophysics (2010), 520(Letters), 71-5

We present new optical circular polarization measurements with typical uncertainties <0.1% for a sample of 21 quasars. All but two objects have null circular polarization. We use this result to constrain ... [more ▼]

We present new optical circular polarization measurements with typical uncertainties <0.1% for a sample of 21 quasars. All but two objects have null circular polarization. We use this result to constrain the polarization due to photon-pseudoscalar mixing along the line of sight. We detect significant (> 3σ) circular polarization in two blazars with high linear polarization and discuss the implications of this result for quasar physics. In particular, the recorded polarization degrees may be indicative of magnetic fields as strong as 1 kG or a significant contribution of inverse Compton scattering to the optical continuum. Based on observations made with ESO Telescopes at the La Silla Observatory (Chile). ESO program ID: 79.A-0625(B).Appendices are only available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailMicrolensing in H1413+117: disentangling line profile emission and absorption in a broad absorption line quasar
Hutsemekers, Damien ULg; Borguet, Benoît ULg; Sluse, D. et al

in Astronomy and Astrophysics (2010), 519

On the basis of 16 years of spectroscopic observations of the four components of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame ... [more ▼]

On the basis of 16 years of spectroscopic observations of the four components of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range, we analyze the spectral differences observed in the P Cygni-type line profiles and have used the microlensing effect to derive new clues to the BAL profile formation. We first find that the absorption gradually decreases with time in all components and that this intrinsic variation is accompanied by a decrease in the intensity of the emission. We confirm that the spectral differences observed in component D can be attributed to a microlensing effect lasting at least a decade. We show that microlensing magnifies the continuum source in image D, leaving the emission line region essentially unaffected. We interpret the differences seen in the absorption profiles of component D as the result of an emission line superimposed onto a nearly black absorption profile. We also find that the continuum source and a part of the broad emission line region are likely de-magnified in component C, while components A and B are not affected by microlensing. Differential dust extinction is measured between the A and B lines of sight. We show that microlensing of the continuum source in component D has a chromatic dependence compatible with the thermal continuum emission of a standard Shakura-Sunyaev accretion disk. Using a simple decomposition method to separate the part of the line profiles affected by microlensing and coming from a compact region from the part unaffected by this effect and coming from a larger region, we disentangle the true absorption line profiles from the true emission line profiles. The extracted emission line profiles appear double-peaked, suggesting that the emission is occulted by a strong absorber, narrower in velocity than the full absorption profile, and emitting little by itself. We propose that the outflow around H1413+117 is constituted by a high-velocity polar flow and a denser, lower velocity disk seen nearly edge-on. Finally, we report on the first ground-based polarimetric measurements of the four components of H1413+117. Based on observations made with the Canada-France-Hawaii Telescope (Hawaii), with ESO Telescopes at the Paranal Observatory (Chile) and with the NASA/ESA Hubble Space Telescope, and obtained from the data archive at the Space Telescope Institute. ESO program ID: 074.A-0152, 075.B-0675, 081.A-0023. [less ▲]

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailThe Optimal Gravitational Lens Telescope
Surdej, Jean ULg; Delacroix, Christian ULg; Coleman, P. et al

in Astronomical Journal (The) (2010), 139

Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, . . . ), it is possible via numerical lens inversion to retrieve the real source image, taking ... [more ▼]

Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, . . . ), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad-hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach. [less ▲]

Detailed reference viewed: 111 (42 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses - VII. Time delays and the Hubble constant from WFI J2033-4723
Vuissoz, Christel; Courbin, F.; Sluse, D. et al

in Astronomy and Astrophysics (2008), 488(2), 481-490

Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H-0 by measuring the time delays between the quasar images. Here we report ... [more ▼]

Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H-0 by measuring the time delays between the quasar images. Here we report the measurement of two independent time delays in the quadruply imaged quasar WFI J2033-4723 (z = 1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER telescope located at La Silla and with the 1.3 m SMARTS telescope located at Cerro Tololo. The light curves have 218 independent epochs spanning 3 full years of monitoring between March 2004 and May 2007, with a mean temporal sampling of one observation every 4th day. We measure the time delays using three different techniques, and we obtain Delta t(B-A) = 35.5 +/- 1.4 days (3.8%) and Delta t(B-C) = 62.6(-2.3)(+4.1) days ((+6.5%)(-3.7%)), where A is a composite of the close, merging image pair. After correcting for the time delays, we find R-band flux ratios of F-A/F-B = 2.88 +/- 0.04, F-A/F-C = 3.38 +/- 0.06, and F-A1/F-A2 = 1.37 +/- 0.05 with no evidence for microlensing variability over a time scale of three years. However, these flux ratios do not agree with those measured in the quasar emission lines, suggesting that longer term microlensing is present. Our estimate of H-0 agrees with the concordance value: non-parametric modeling of the lensing galaxy predicts H-0 = 67(-10)(+13) km s(-1) Mpc(-1), while the Single Isothermal Sphere model yields H-0 = 63(-3)(+7) km s(-1) Mpc(-1) (68% confidence level). More complex lens models using a composite de Vaucouleurs plus NFW galaxy mass profile show twisting of the mass isocontours in the lensing galaxy, as do the non-parametric models. As all models also require a significant external shear, this suggests that the lens is a member of the group of galaxies seen in field of view of WFI J2033-4723. [less ▲]

Detailed reference viewed: 33 (19 ULg)
Full Text
See detailGravitational Lensing, Dark Matter and the Optical Gravitational Lens Experiment
Surdej, Jean ULg; Claeskens, Jean-François ULg; Delacroix, Christian ULg et al

in Matagne, N.; Cugnon, Joseph; Lansberg, Jean-Philippe (Eds.) American Institute of Physics Conference Proc. Volume 1038 (2008, August 01)

After briefly reviewing the history of gravitational lensing, we recall the basic principles of the theory. We then describe and use a simple optical gravitational lens experiment which has the virtue of ... [more ▼]

After briefly reviewing the history of gravitational lensing, we recall the basic principles of the theory. We then describe and use a simple optical gravitational lens experiment which has the virtue of accounting for all types of image configurations observed so far among the presently known gravitational lens systems. Finally, we briefly present the 4m International Liquid Mirror Telescope project in the context of a photometric monitoring of multiply imaged quasars. [less ▲]

Detailed reference viewed: 90 (28 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. V. The time delay in SDSS J1650+4251
Vuissoz, C.; Courbin, F.; Sluse, D. et al

in Astronomy and Astrophysics (2007), 464

Aims.Our aim is to measure the time delay between the two gravitationally lensed images of the z_qso = 1.547 quasar SDSS J1650+4251, in order to estimate the Hubble constant H_0. Methods: Our measurement ... [more ▼]

Aims.Our aim is to measure the time delay between the two gravitationally lensed images of the z_qso = 1.547 quasar SDSS J1650+4251, in order to estimate the Hubble constant H_0. Methods: Our measurement is based on R-band light curves with 57 epochs obtained at Maidanak Observatory, in Uzbekistan, from May 2004 to September 2005. The photometry is performed using simultaneous deconvolution of the data, which provides the individual light curves of the otherwise blended quasar images. The time delay is determined from the light curves using two very different numerical techniques, i.e., polynomial fitting and direct cross-correlation. The time delay is converted into H[SUB]0[/SUB] following analytical modeling of the potential well. Results: Our best estimate of the time delay is Delta t = 49.5 ± 1.9 days, i.e., we reach a 3.8% accuracy. The R-band flux ratio between the quasar images, corrected for the time delay and for slow microlensing, is F_A/F[SUB]B[/SUB] = 6.2 ± 5%. Conclusions: .The accuracy reached on the time delay allows us to discriminate well between families of lens models. As for most other multiply imaged quasars, only models of the lensing galaxy that have a de Vaucouleurs mass profile plus external shear give a Hubble constant compatible with the current most popular value (H[SUB]0[/SUB] = 72 ± 8 km s[SUP]-1[/SUP] Mpc[SUP]-1[/SUP]). A more realistic singular isothermal sphere model plus external shear gives H[SUB]0[/SUB] = 51.7[SUP]+4.0[/SUP][SUB]-3.0[/SUB] km s[SUP]-1[/SUP] Mpc[SUP]-1[/SUP]. Table [see full text] is only available in electronic form at http://www.aanda.org [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailCOSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. II. SDSS J0924+0219: the redshift of the lensing galaxy, the quasar spectral variability and the Einstein rings
Eigenbrod, A.; Courbin, F.; Dye, S. et al

in Astronomy and Astrophysics (2006), 451

Aims.To provide the observational constraints required to use the gravitationally lensed quasar SDSS J0924+0219 for the determination of H[SUB]0[/SUB] from the time delay method. We measure here the ... [more ▼]

Aims.To provide the observational constraints required to use the gravitationally lensed quasar SDSS J0924+0219 for the determination of H[SUB]0[/SUB] from the time delay method. We measure here the redshift of the lensing galaxy, we show the spectral variability of the source, and we resolve the lensed host galaxy of the source. <BR />Methods.We present our VLT/FORS1 deep spectroscopic observations of the lensed quasar SDSS J0924+0219, as well as archival HST/NICMOS and ACS images of the same object. The two-epoch spectra, obtained in the Multi Object Spectroscopy (MOS) mode, allow for very accurate flux calibration and spatial deconvolution. This strategy provides spectra for the lensing galaxy and for the quasar images A and B, free of any mutual light contamination. We deconvolve the HST images as well, which reveal a double Einstein ring. The mass distributions in the lens, reconstructed in several ways, are compared. <BR />Results.We determine the redshift of the lensing galaxy in SDSS J0924+0219: z_lens = 0.394±0.001. Only slight spectral variability is seen in the continuum of quasar images A and B, while the C III] , Mg II and Fe II emission lines display obvious changes. The flux ratio between the quasar images A and B is the same in the emission lines and in the continuum. One of the Einstein rings found using deconvolution corresponds to the lensed quasar host galaxy at z=1.524 and a second bluer one, is the image either of a star-forming region in the host galaxy, or of another unrelated lower redshift object. A broad range of lens models give a satisfactory fit to the data. However, they predict very different time delays, making SDSS J0924+0219 an object of particular interest for photometric monitoring. In addition, the lens models reconstructed using exclusively the constraints from the Einstein rings, or using exclusively the astrometry of the quasar images, are not compatible. This suggests that multipole-like structures play an important role in SDSS J0924+0219. <BR /> [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
See detailLarge Scale Correlations of Quasar Polarization Vectors: Hints of Extreme Scale Structures?
Cabanac, R. A.; Hutsemekers, Damien ULg; Sluse, D. et al

in Astronomical Polarimetry: Current Status and Future Directions. ASPC 343 (2005, December 01)

A survey measuring quasar polarization vectors has been started in two regions towards the North and South Galactic Poles. Here, we review the discovery of significant correlations of orientations of ... [more ▼]

A survey measuring quasar polarization vectors has been started in two regions towards the North and South Galactic Poles. Here, we review the discovery of significant correlations of orientations of polarization vectors over huge angular distances. We report new results including a larger sample of the quasars confirming the existence of coherent orientations at redshifts z>1. [less ▲]

Detailed reference viewed: 10 (1 ULg)
Full Text
Peer Reviewed
See detailMapping extreme-scale alignments of quasar polarization vectors
Hutsemekers, Damien ULg; Cabanac, R.; Lamy, H. et al

in Astronomy and Astrophysics (2005), 441

Based on a new sample of 355 quasars with significant optical polarization and using complementary statistical methods, we confirm that quasar polarization vectors are not randomly oriented over the sky ... [more ▼]

Based on a new sample of 355 quasars with significant optical polarization and using complementary statistical methods, we confirm that quasar polarization vectors are not randomly oriented over the sky with a probability often in excess of 99.9%. The polarization vectors appear coherently oriented or aligned over huge ( 1 Gpc) regions of the sky located at both low (z Ë 0.5) and high (z Ë 1.5) redshifts and characterized by different preferred directions of the quasar polarization. In fact, there seems to exist a regular alternance along the line of sight of regions of randomly and aligned polarization vectors with a typical comoving length scale of 1.5 Gpc. Furthermore, the mean polarization angle bartheta appears to rotate with redshift at the rate of 30° per Gpc. The symmetry of the the bartheta -z relation is mirror-like, the mean polarization angle rotating clockwise with increasing redshift in North Galactic hemisphere and counter-clockwise in the South Galactic one. These characteristics make the alignment effect difficult to explain in terms of local mechanisms, namely a contamination by interstellar polarization in our Galaxy. While interpretations like a global rotation of the Universe can potentially explain the effect, the properties we observe qualitatively correspond to the dichroism and birefringence predicted by photon-pseudoscalar oscillation within a magnetic field. Interestingly, the alignment effect seems to be prominent along an axis not far from preferred directions tentatively identified in the Cosmic Microwave Background maps. Although many questions and more particularly the interpretation of the effect remain open, alignments of quasar polarization vectors appear as a promising new way to probe the Universe and its dark components at extremely large scales. [less ▲]

Detailed reference viewed: 35 (6 ULg)
See detailAlignments of quasar polarization vectors (Hutsemekers+, 2005)
Hutsemekers, Damien ULg; Cabanac, R.; Lamy, H. et al

Textual, factual or bibliographical database (2005)

The table contains linear polarization measurements for 355 QSOs. (3 data files).

Detailed reference viewed: 25 (6 ULg)
Full Text
Peer Reviewed
See detailNew optical polarization measurements of quasi-stellar objects. The data
Sluse, D.; Hutsemekers, Damien ULg; Lamy, H. et al

in Astronomy and Astrophysics (2005), 433

New linear polarization measurements (mainly in the V band) are presented for 203 quasi-stellar objects (QSOs). The sample is made up of 94 QSOs located in the North Galactic Pole (NGP) region and of 109 ... [more ▼]

New linear polarization measurements (mainly in the V band) are presented for 203 quasi-stellar objects (QSOs). The sample is made up of 94 QSOs located in the North Galactic Pole (NGP) region and of 109 QSOs in the South Galactic Pole (SGP) region. First time measurements have been obtained for 184 QSOs. Among them, 109 known radio-emitters, 42 known Broad Absorption Line (BAL) QSOs, and 1 gravitationally lensed quasi-stellar object. We found high polarization levels (p > 3%) for 12 QSOs, including the BAL QSO <ASTROBJ>SDSS J1409+0048</ASTROBJ>. For 10 objects, measurements obtained at different epochs do exist. Two of them show evidence for variability: the highly polarized BL Lac candidate <ASTROBJ>PKS 1216-010</ASTROBJ> and the radio source <ASTROBJ>PKS 1222+037</ASTROBJ>. Based on observations collected at the European Southern Observatory (ESO, La Silla and Paranal). Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/757 [less ▲]

Detailed reference viewed: 32 (1 ULg)