References of "Simpson, E. K"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWASP-92b, WASP-93b and WASP-118b: Three new transiting close-in giant planets
Hay, K. L.; Collier-Cameron, A.; Doyle, A. P. et al

in Monthly Notices of the Royal Astronomical Society (2016), 463

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric ... [more ▼]

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric lightcurves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 days, which has R[SUB]p[/SUB] = 1.461 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.805 ± 0.068M[SUB]J[/SUB]. WASP-93b orbits its F4 host star every 2.73 days and has R[SUB]p[/SUB] = 1.597 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 1.47 ± 0.029M[SUB]J[/SUB]. WASP-118b also has a hot host star (F6) and is moderately inflated, where R[SUB]p[/SUB] = 1.440 ± 0.036R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.514 ± 0.020M[SUB]J[/SUB] and the planet has an orbital period of 4.05 days. They are bright targets (V = 13.18, 10.97 and 11.07 respectively) ideal for further characterisation work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin-orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered. [less ▲]

Detailed reference viewed: 36 (6 ULg)
Full Text
Peer Reviewed
See detailThe spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter-McLaughlin observations
Simpson, E. K.; Pollacco, D.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2011), 414

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the ... [more ▼]

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars' rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: {\lambda} = -4.7 \pm 4.0{\deg}, {\lambda} = 15 + 33{\deg}/-43{\deg} and {\lambda} = -9.7 +9.0{\deg}/-7.7{\deg}, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, {\lambda} = -79 +4.5{\deg}/-4.3{\deg}. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-40b: Independent Discovery of the 0.6 M Transiting Exoplanet HAT-P-27b
Anderson, D. R.; Barros, S. C. C.; Boisse, I. et al

in Publications of the Astronomical Society of the Pacific [=PASP] (2011), 123

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G ... [more ▼]

From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star. [less ▲]

Detailed reference viewed: 30 (4 ULg)