References of "Siebenlist, Ulrich"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailElongator controls the migration and differentiation of cortical neurons through acetylation of a tubulin
Creppe, Catherine ULg; Malinouskaya, Lina ULg; Volvert, Marie-Laure ULg et al

in Cell (2009), 136

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which ... [more ▼]

The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which contributes to transcript elongation, also regulates the maturation of projection neurons. Indeed, silencing of its scaffold (Elp1) or catalytic subunit (Elp3) cell-autonomously delays the migration and impairs the branching of projection neurons. Strikingly, neurons defective in Elongator show reduced levels of acetylated alpha tubulin. A direct reduction of alpha tubulin acetylation leads to comparable defects in cortical neurons and suggests that alpha tubulin is a target of Elp3. This is further supported by the demonstration that Elp3 promotes acetylation and counteracts HDAC6-mediated deacetylation of this substrate in vitro. Our results uncover alpha tubulin as a target of the Elongator complex and suggest that a tight regulation of its acetylation underlies the maturation of cortical projection neurons. [less ▲]

Detailed reference viewed: 263 (98 ULg)
Full Text
Peer Reviewed
See detailThe adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation
Claudio, Estefania; Sonder, Soren Ulrik; Saret, Sun et al

in Journal of Immunology (2009), 182

IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as ... [more ▼]

IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c(+) macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo. [less ▲]

Detailed reference viewed: 63 (9 ULg)
Full Text
Peer Reviewed
See detailLipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKK epsilon-dependent lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF
Gatot, Jean-Stéphane; Gioia, Romain ULg; Chau, Tieu-Lan ULg et al

in Journal of Biological Chemistry (2007), 282(43), 31131-31146

Type I interferon gene induction relies on IKK-related kinase TBK1 and IKK epsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins ... [more ▼]

Type I interferon gene induction relies on IKK-related kinase TBK1 and IKK epsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins that assemble these kinase complexes are poorly characterized. We show here that TANK/ITRAF is required for the TBK1- and IKK epsilon-mediated IRF3/7 phosphorylations through some Toll-like receptor-dependent pathways and is part of a TRAF3-containing complex. Moreover, TANK is dispensable for the early phase of double-stranded RNA-mediated IRF3 phosphorylation. Interestingly, TANK is heavily phosphorylated by TBK1-IKK epsilon upon lipopolysaccharide stimulation and is also subject to lipopolysaccharide- and TBK1-IKK epsilon-mediated Lys(63)-linked polyubiquitination, a mechanism that does not require TBK1-IKK epsilon kinase activity. Thus, we have identified TANK as a scaffold protein that assembles some but not all IRF3/7-phosphorylating TBK1-IKK epsilon complexes and demonstrated that these kinases possess two functions, namely the phosphorylation of both IRF3/7 and TANK as well as the recruitment of an E3 ligase for Lys63-linked polyubiquitination of their scaffold protein, TANK. [less ▲]

Detailed reference viewed: 71 (17 ULg)
Full Text
Peer Reviewed
See detailTranscription impairment and cell migration defects in elongator-depleted cells: Implication for familial dysautonomia
Close, Pierre ULg; Hawkes, Nicola; Cornez, Isabelle ULg et al

in Molecular Cell (2006), 22(4), 521-531

Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neuro-developmental disease with complex clinical characteristics. Elongator was previously linked not only ... [more ▼]

Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neuro-developmental disease with complex clinical characteristics. Elongator was previously linked not only with transcriptional elongation and histone acetylation but also with other cellular processes. Here, we used RNA interference (RNAi) and fibroblasts from FD patients to identify Elongator target genes and study the role of Elongator in transcription. Strikingly, whereas Elongator is recruited to both target and nontarget genes, only target genes display histone H3 hypoacetylation and progressively lower RNAPII density through the coding region in FD cells. Interestingly, several target genes encode proteins implicated in cell motility. Indeed, characterization of IKAP/hELP1 RNAi cells, FD fibroblasts, and neuronal cell-derived cells uncovered defects in this cellular function upon Elongator depletion. These results indicate that defects in Elongator function affect transcriptional elongation of several genes and that the ensuing cell motility deficiencies may underlie the neuropathology of FD patients. [less ▲]

Detailed reference viewed: 157 (27 ULg)
Full Text
Peer Reviewed
See detailGSK3-Mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity
Viatour, Patrick ULg; Dejardin, Emmanuel ULg; Warnier, Michael et al

in Molecular Cell (2004), 16(1), 35-45

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 ... [more ▼]

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 kinases have not been identified so far. In this report, we show that BCL-3 is a substrate for the protein kinase GSK3 and that GSK3-mediated BCL-3 phosphorylation, which is inhibited by Akt activation, targets its degradation through the proteasome pathway. This phosphorylation modulates its association with HDAC1, -3, and -6 and attenuates its oncogenicity by selectively controlling the expression of a subset of newly identified target genes such as SLPI and CxcI1. Our results therefore suggest that constitutive BCL-3 phosphorylation by GSK3 regulates BCL-3 turnover and transcriptional activity. [less ▲]

Detailed reference viewed: 36 (11 ULg)
Full Text
Peer Reviewed
See detailAssociation of the adaptor TANK with the IκB kinase (IKK) regulator NEMO connects IKK complexes with IKKε and TBK1 kinases
Chariot, Alain ULg; Leonardi, Antonio; Muller, Jean-Noel ULg et al

in Journal of Biological Chemistry (2002), 277(40), 37029-37036

Canonical activation of NF-kappaB is mediated via phosphorylation of the inhibitory IkappaB proteins by the IkappaB kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKKalpha and ... [more ▼]

Canonical activation of NF-kappaB is mediated via phosphorylation of the inhibitory IkappaB proteins by the IkappaB kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKKalpha and IKKbeta subunits and a presumed regulatory protein termed NEMO (NF-kappaB essential modulator) or IKKgamma. NEMO/IKKgamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappaB activator) as a NEMO/IKKgamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappaB activation in a complex with TANK-binding kinase 1 (TBK1) or IKKepsilon, two kinases distantly related to IKKalpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKKepsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKKgamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKKepsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappaB activation. [less ▲]

Detailed reference viewed: 31 (9 ULg)
Full Text
Peer Reviewed
See detailCIKS, a connection to Ikappa B kinase and stress-activated protein kinase.
Leonardi, Antonio; Chariot, Alain ULg; Claudio, Estefania et al

in Proceedings of the National Academy of Sciences of the United States of America (2000), 97(19), 10494-10499

Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF ... [more ▼]

Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. [less ▲]

Detailed reference viewed: 5 (0 ULg)
Full Text
Peer Reviewed
See detailIkappab-Alpha Enhances Transactivation by the Hoxb7 Homeodomain-Containing Protein
Chariot, Alain ULg; Princen, Frédéric; Gielen, Jacques et al

in Journal of Biological Chemistry (1999), 274(9), 5318-25

Combinatorial interactions between distinct transcription factors generate specificity in the controlled expression of target genes. In this report, we demonstrated that the HOXB7 homeodomain-containing ... [more ▼]

Combinatorial interactions between distinct transcription factors generate specificity in the controlled expression of target genes. In this report, we demonstrated that the HOXB7 homeodomain-containing protein, which plays a key role in development and differentiation, physically interacted in vitro with IkappaB-alpha, an inhibitor of NF-kappaB activity. This interaction was mediated by the IkappaB-alpha ankyrin repeats and C-terminal domain as well as by the HOXB7 N-terminal domain. In transient transfection experiments, IkappaB-alpha markedly increased HOXB7-dependent transcription from a reporter plasmid containing a homeodomain consensus-binding sequence. This report therefore showed a novel function for IkappaB-alpha, namely a positive regulation of transcriptional activation by homeodomain-containing proteins. [less ▲]

Detailed reference viewed: 14 (3 ULg)