References of "Shostak, Kateryna"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDeregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways
Stellzig, J; Chariot, Alain ULg; Shostak, Kateryna ULg et al

in Oncogenesis (2013), e79

Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although ... [more ▼]

Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity. [less ▲]

Detailed reference viewed: 6 (2 ULg)
Full Text
Peer Reviewed
See detailNF-kB, stem cells and breast cancer: the links get stronger
Shostak, Kateryna ULg; Chariot, Alain ULg

in Breast Cancer Research [=BCR] (2011), 13(4), 214

Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be ... [more ▼]

Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be elucidated. Among them is the transcription factor NF-κB, which is known to play critical roles in cell survival, inflammation and immunity. Recent studies indicate that mammary epithelial NF-κB regulates the self-renewal of breast cancer stem cells in a model of Her2-dependent tumourigenesis. We will describe here the NF-κB-activating pathways that are involved in this process and in which progenitor cells this transcription factor is actually activated. [less ▲]

Detailed reference viewed: 51 (14 ULg)
Full Text
Peer Reviewed
See detailThe repressing function of the oncoprotein BCL-3 requires CtBP while its polyubiquitination and degradation involve the E3 ligase TBLR1
Keutgens, Aurore ULg; Shostak, Kateryna ULg; Close, Pierre ULg et al

in Molecular & Cellular Biology (2010), 30

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated ... [more ▼]

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic IkB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kB. [less ▲]

Detailed reference viewed: 64 (23 ULg)
Full Text
Peer Reviewed
See detailBCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1.
Keutgens, Aurore ULg; Zhang-Shao, Xin ULg; Shostak, Kateryna ULg et al

in Journal of Biological Chemistry (2010), 285(33), 2583125840

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the ... [more ▼]

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast-two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the K48-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7 known to polyubiquitinate a variety of substrates phosphorylated by GSK3 is dispensable for BCL-3 degradation. Thus, our data defined an unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein. [less ▲]

Detailed reference viewed: 79 (36 ULg)