References of "Shostak, Kateryna"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailELP3 links tRNA modification to IRES-dependent translation of LEF-1 to promote metastasis in breast cancer
Delaunay, Sylvain ULiege; Rapino, Francesca ULiege; Tharun, Lars et al

in The Journal of Experimental Medicine (2016), 213

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the ... [more ▼]

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the wobble U34 base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are upregulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the pro-invasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1-dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate the key role of U34 tRNA modification to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis. [less ▲]

Detailed reference viewed: 44 (6 ULiège)
See detailtRNA modification: Elogator sustains Breast cancer metastasis
Delaunay, Sylvain ULiege; Rapino, Francesca ULiege; Tharun, Lars et al

Conference (2016, May)

Detailed reference viewed: 39 (2 ULiège)
Peer Reviewed
See detailtRNA modification: Elogator promotes breast metastasis in breast cancer
Delaunay, Sylvain ULiege; Rapino, Francesca ULiege; Zhou, Zhaoli ULiege et al

Conference (2016, January 25)

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the ... [more ▼]

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the wobble U34 base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are upregulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the pro-invasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1- dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate the key role of U34 tRNA modification to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis. [less ▲]

Detailed reference viewed: 55 (1 ULiège)
Full Text
Peer Reviewed
See detailThe Prosurvival IKK-Related Kinase IKK« Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine
Göktuna, SI.; Shostak, Kateryna ULiege; Chau, TL. et al

in Cancer Research (2016), 76

Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to ... [more ▼]

Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikke in Wnt-driven tumor development. We found that Ikke was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikke in b-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikke to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikke was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding proinflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikke-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikke phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikke to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation. [less ▲]

Detailed reference viewed: 8 (1 ULiège)
Full Text
Peer Reviewed
See detailElp3 drives Wnt-dependent tumor initiation and regeneration in the intestine
LADANG, Aurélie ULiege; Rapino, Francesca ULiege; Heukamp, Lukas et al

in Journal of Experimental Medicine (2015), 212(12), 2057-75

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer ... [more ▼]

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer stem cells. Here, we show that Elp3, the catalytic subunit of the Elongator complex, is required for Wnt-driven intestinal tumor initiation and radiation-induced regeneration by maintaining a subpool of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Elp3 deficiency dramatically delayed tumor appearance in Apc-mutated intestinal epithelia and greatly prolonged mice survival without affecting the normal epithelium. Specific ablation of Elp3 in Lgr5(+) cells resulted in marked reduction of polyp formation upon Apc inactivation, in part due to a decreased number of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Mechanistically, Elp3 is induced by Wnt signaling and promotes Sox9 translation, which is needed to maintain the subpool of Lgr5(+)/Dclk1(+) cancer stem cells. Consequently, Elp3 or Sox9 depletion led to similar defects in Dclk1(+) cancer stem cells in ex vivo organoids. Finally, Elp3 deficiency strongly impaired radiation-induced intestinal regeneration, in part because of decreased Sox9 protein levels. Together, our data demonstrate the crucial role of Elp3 in maintaining a subpopulation of Lgr5-derived and Sox9-expressing cells needed to trigger Wnt-driven tumor initiation in the intestine. [less ▲]

Detailed reference viewed: 77 (31 ULiège)
Full Text
Peer Reviewed
See detailEGFR and NF-kB: partners in cancer
Shostak, Kateryna ULiege; Chariot, Alain ULiege

in Trends in Molecular Medicine (2015), 21

Oncogenic proteins cooperate to promote tumor development and progression by sustaining cell proliferation, survival and invasiveness. Constitutive EGFR and NF-kappaB activities are seen in multiple solid ... [more ▼]

Oncogenic proteins cooperate to promote tumor development and progression by sustaining cell proliferation, survival and invasiveness. Constitutive EGFR and NF-kappaB activities are seen in multiple solid tumors and combine to provide oncogenic signals to cancer cells. Understanding how these oncogenic pathways are connected is critical, given their role in intrinsic or acquired resistance to targeted anti-cancer therapies. We review molecular mechanisms by which both EGFR- and NF-kappaB-dependent pathways establish positive loops to increase their oncogenic potential. We also describe how NF-kappaB promotes resistance to EGFR inhibitors. [less ▲]

Detailed reference viewed: 76 (6 ULiège)
See detailElongator: mcm5s2 modification fosters breast cancer metastasis
Delaunay, Sylvain ULiege; Rapino, Francesca ULiege; Zhou, Zhaoli ULiege et al

Scientific conference (2015, March 09)

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the ... [more ▼]

Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Post-transcriptional nucleoside modifications of transfer RNAs (tRNAs) at the wobble U34 base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are upregulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the pro-invasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1- dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate the key role of U34 tRNA modification to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis. [less ▲]

Detailed reference viewed: 41 (2 ULiège)
Full Text
Peer Reviewed
See detailA role for APPL1 in tlr3/4-dependent TBK1 and IKKε activation in macrophages
Chau, Tieu-Lan ULiege; Göktuna, Serkan ULiege; Rammal, Ayman et al

in Journal of Immunology (2015)

Endosomes have important roles in intracellular signal transduction as a sorting platform. Signaling cascades from TLR engagement to IRF3-dependent gene transcription rely on endosomes, yet the proteins ... [more ▼]

Endosomes have important roles in intracellular signal transduction as a sorting platform. Signaling cascades from TLR engagement to IRF3-dependent gene transcription rely on endosomes, yet the proteins that specifically recruit IRF3-activating molécules to them are poorly defined. We show that adaptor protein containing a pleckstrin-homology domain, a phosphotyrosine-binding domain, and a leucine zipper motif (APPL)1, an early endosomal protein, is required for both TRIF- and retinoic acid–inducible gene 1–dependent signaling cascades to induce IRF3 activation. APPL1, but not early endosome Ag 1, deficiency impairs IRF3 target gene expression upon engagement of both TLR3 and TLR4 pathways, as well as in H1N1-infected macrophages. The IRF3-phosphorylating kinases TBK1 and IKK« are recruited to APPL1 endosomes in LPS-stimulated macrophages. Interestingly, APPL1 undergoes proteasome-mediated degradation through ERK1/2 to turn off signaling. APPL1 degradation is blocked when signaling through the endosome is inhibited by chloroquine or dynasore. Therefore, APPL1 endosomes are critical for IRF3-dependent gene expression in response to some viral and bacterial infections in macrophages. Those signaling pathways involve the signal-induced degradation of APPL1 to prevent aberrant IRF3-dependent gene expression linked to immune diseases. [less ▲]

Detailed reference viewed: 65 (12 ULiège)
Full Text
Peer Reviewed
See detailMDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation.
Shostak, Kateryna ULiege; Patrascu, F.; Göktuna, Serkan ULiege et al

in Cell death and differentiation (2014), 5(21), 811-24

Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because ... [more ▼]

Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels.Cell Death and Differentiation advance online publication, 31 January 2014; doi:10.1038/cdd.2014.2. [less ▲]

Detailed reference viewed: 61 (16 ULiège)
Full Text
Peer Reviewed
See detailNF-kappaB-induced KIAA1199 promotes survival through EGFR signalling.
Shostak, Kateryna ULiege; Zhang, Xin; Hubert, Pascale ULiege et al

in Nature communications (2014), 5

Constitutive activation of EGFR- and NF-kappaB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as ... [more ▼]

Constitutive activation of EGFR- and NF-kappaB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced on human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signalling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signalling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial-mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-kappaB activity that transmits pro-survival and invasive signals through EGFR signalling. [less ▲]

Detailed reference viewed: 39 (5 ULiège)
Full Text
Peer Reviewed
See detailDeregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways
Stellzig, J; Chariot, Alain ULiege; Shostak, Kateryna ULiege et al

in Oncogenesis (2013), e79

Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although ... [more ▼]

Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity. [less ▲]

Detailed reference viewed: 18 (1 ULiège)
Full Text
Peer Reviewed
See detailNF-kB, stem cells and breast cancer: the links get stronger
Shostak, Kateryna ULiege; Chariot, Alain ULiege

in Breast Cancer Research [=BCR] (2011), 13(4), 214

Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be ... [more ▼]

Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be elucidated. Among them is the transcription factor NF-κB, which is known to play critical roles in cell survival, inflammation and immunity. Recent studies indicate that mammary epithelial NF-κB regulates the self-renewal of breast cancer stem cells in a model of Her2-dependent tumourigenesis. We will describe here the NF-κB-activating pathways that are involved in this process and in which progenitor cells this transcription factor is actually activated. [less ▲]

Detailed reference viewed: 63 (12 ULiège)
Full Text
Peer Reviewed
See detailThe repressing function of the oncoprotein BCL-3 requires CtBP while its polyubiquitination and degradation involve the E3 ligase TBLR1
Keutgens, Aurore ULiege; Shostak, Kateryna ULiege; Close, Pierre ULiege et al

in Molecular & Cellular Biology (2010), 30

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated ... [more ▼]

The nuclear and oncogenic BCL-3 protein activates or represses gene transcription when bound to NF-kB proteins p50 and p52, yet the molecules that specifically interact with BCL-3 and drive BCL-3-mediated effects on gene expression remain largely uncharacterized. Moreover, GSK3-mediated phosphorylation of BCL-3 triggers its degradation through the proteasome, but the proteins involved in this degradative pathway are poorly characterized. Biochemical purification of interacting partners of BCL-3 led to the identification of CtBP as a molecule required for the ability of BCL-3 to repress gene transcription. CtBP is also required for the oncogenic potential of BCL-3 and for its ability to inhibit UV-mediated cell apoptosis in keratinocytes. We also defined the E3 ligase TBLR1 as a protein involved in BCL-3 degradation through a GSK3-independent pathway. Thus, our data demonstrate that the LSD1/CtBP complex is required for the repressing abilities of an oncogenic IkB protein, and they establish a functional link between the E3 ligase TBLR1 and NF-kB. [less ▲]

Detailed reference viewed: 83 (14 ULiège)
Full Text
Peer Reviewed
See detailBCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1.
Keutgens, Aurore ULiege; Zhang-Shao, Xin ULiege; Shostak, Kateryna ULiege et al

in Journal of Biological Chemistry (2010), 285(33), 2583125840

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the ... [more ▼]

The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast-two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the K48-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7 known to polyubiquitinate a variety of substrates phosphorylated by GSK3 is dispensable for BCL-3 degradation. Thus, our data defined an unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein. [less ▲]

Detailed reference viewed: 96 (34 ULiège)
Full Text
Peer Reviewed
See detailReduction of the transcription level of the mitochondrial genome in human glioblastoma.
Dmitrenko, Vladimir; Shostak, Kateryna ULiege; Boyko, Oxana et al

in Cancer Letters (2005), 218(1), 99-107

Screening of human fetal brain cDNA library by glioblastoma (GB) and normal human brain total cDNA probes revealed 80 differentially hybridized clones. Hybridization of the DNA from selected clones and ... [more ▼]

Screening of human fetal brain cDNA library by glioblastoma (GB) and normal human brain total cDNA probes revealed 80 differentially hybridized clones. Hybridization of the DNA from selected clones and the same cDNA probes confirmed this difference for 38 clones, of which eight clones contained Alu-repeat inserts with increased levels in GB. Thirty clones contained cDNAs corresponding to mitochondrial genes for ATP synthase subunit 6 (ATP6), cytochrome c oxidase subunit II (COXII), cytochrome c oxidase subunit III (COXIII), NADH dehydrogenase subunit 1 (ND1), NADH dehydrogenase subunit 4 (ND4), and mitochondrial 12S rRNA. The levels of all these mitochondrial transcripts were decreased in glioblastomas as compared to tumor-adjacent histologically normal brain. Earlier we found the same for cytochrome c oxidase subunit I (COXI) Serial Analysis of Gene Expression (SAGE) showed lower content of the tags for all mitochondrial genes in GB SAGE libraries and together with our experimental data could serve as evidence of general inactivation of the mitochondrial genome in glioblastoma--the most malignant and abundant form of human brain tumor. [less ▲]

Detailed reference viewed: 27 (0 ULiège)
Full Text
Peer Reviewed
See detailCharacterization of genes with increased expression in human glioblastomas.
Kavsan, V.; Shostak, Kateryna ULiege; Dmitrenko, V. et al

in Tsitologiia i Genetika (2005), 39(6), 37-49

In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by ... [more ▼]

In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by comparison of nine glioblastoma with five normal brain SAGE libraries, 44 increased their expression in glioblastomas. Most corresponding proteins were involved in angiogenesis, host-tumor immune interplay, multidrug resistance, extracellular matrix (ECM) formation, IGF-signalling, or MAP-kinase pathway. Among them, 16 genes had a high expression both in glioblastomas and in glioblastoma cell lines suggesting their expression in transformed cells. Other 28 genes had an increased expression only in glioblastomas, not in glioblastoma cell lines suggesting an expression possibly originated from host cells. Many of these genes are among the top transcripts in activated macrophages, and involved in immune response and angiogenesis. This altered pattern of gene expression in both host and tumor cells, can be viewed as a molecular marker in the analysis of malignant progression of astrocytic tumors, and as possible clues for the mechanism of disease. Moreover, several genes overexpressed in glioblastomas produce extracellular proteins, thereby providing possible therapeutic targets. Further characterization of these genes will thus allow them to be exploited in molecular classification of glial tumors, diagnosis, prognosis, and anticancer therapy. [less ▲]

Detailed reference viewed: 18 (0 ULiège)
Full Text
Peer Reviewed
See detailDownregulation of putative tumor suppressor gene TSC-22 in human brain tumors.
Shostak, Kateryna ULiege; Dmitrenko, Vladimir V.; Garifulin, Oleg M. et al

in Journal of Surgical Oncology (2003), 82(1), 57-64

BACKGROUND AND OBJECTIVES: Our objective was to identify differentially expressed genes involved in the pathogenesis of glioblastoma multiforme (GBM). METHODS: Screening of arrayed human fetal brain and ... [more ▼]

BACKGROUND AND OBJECTIVES: Our objective was to identify differentially expressed genes involved in the pathogenesis of glioblastoma multiforme (GBM). METHODS: Screening of arrayed human fetal brain and human postnatal brain cDNA libraries was performed by differential hybridization with glioblastoma multiforme and human normal brain cDNAs. RESULTS: Repeated differential hybridization of more than 100 cDNA clones selected by primary screening and analysis of RNA from adult normal brain and glial tumors showed 16 nucleotide sequences differentially expressed between normal brain and brain tumors. Among others, decreased content in astrocytic tumors was determined for TSC-22 mRNA corresponding to cDNA in the ICRFp507J1041 clone from human fetal brain cDNA library. Northern blot hybridization of RNA from different human brain tumors showed very low amounts of TSC-22 mRNA in most investigated samples of GBM, anaplastic astrocytoma, and some other tumors. Complete lack of expression of TSC-22 occurred in one sample of anaplastic astrocytoma, as well as in meningioma, brain sarcoma, sarcomatous meningioma, and oligodendroglioma. The differential expression of TSC-22 gene was confirmed by semiquantitative RT-PCR in 15 samples of astrocytomas WHO grade II-IV and three samples of normal brain. CONCLUSIONS: Significantly decreased levels of TSC-22 mRNA in human brain and salivary gland tumors and antiproliferative role of TSC-22 strongly suggest a tumor suppressor role for TSC-22. J. [less ▲]

Detailed reference viewed: 16 (0 ULiège)
Full Text
Peer Reviewed
See detailHC gp-39 gene is upregulated in glioblastomas.
Shostak, Kateryna ULiege; Labunskyy, Vyacheslav; Dmitrenko, Vladimir et al

in Cancer Letters (2003), 198(2), 203-10

Public databases of the Cancer Genome Anatomy Project were used to quantify the relative gene expression levels in glioblastoma multiforme (GBM) and normal brain by Serial Analysis of Gene Expression ... [more ▼]

Public databases of the Cancer Genome Anatomy Project were used to quantify the relative gene expression levels in glioblastoma multiforme (GBM) and normal brain by Serial Analysis of Gene Expression (SAGE). Analysis revealed HC gp-39 among the genes with the most pronounced changes of expression in tumor cells. Northern hybridization confirmed the results of computer analysis and showed that enhanced expression of the HC gp-39 gene was mainly in GBMs and occasionally in anaplastic astrocytomas. Neither SAGE nor Northern analysis revealed the presence of HC gp-39 mRNA in the glioblastoma cell line, thus the detection of increased quantities of this mRNA in GBMs may be associated with activated macrophages. Since the numbers of infiltrating macrophages and small vessel density are higher in glioblastomas than in anaplastic astrocytomas or astrocytomas, the HC gp-39 gene can be used as a molecular marker in the analysis of malignant progression of astrocytic gliomas. [less ▲]

Detailed reference viewed: 19 (1 ULiège)