References of "Serwas, Harry"
     in
Bookmark and Share    
Full Text
See detailElectrografting method for forming and regulating a strong adherent nanostructured polymer coating
Jérôme, Robert ULg; Jérôme, Christine ULg; Serwas, Harry et al

Patent (2009)

Electrografting method for forming and regulating a strongly adherent nanostructured polymer coating onto an electro-conductive surface profile characterized in that the surface profile is regulated by ... [more ▼]

Electrografting method for forming and regulating a strongly adherent nanostructured polymer coating onto an electro-conductive surface profile characterized in that the surface profile is regulated by electrodeposition of nanometre- and/or micrometre-scale nuclei onto the surface profile prior to or simultaneously to the formation of the polymer coating. [less ▲]

Detailed reference viewed: 12 (2 ULg)
Full Text
Peer Reviewed
See detailPreparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry
Aqil, Abdelhafid ULg; Serwas, Harry; Delplancke, J. L. et al

in Ultrasonics Sonochemistry (2008), 15(6), 1055-1061

Stable suspensions of gold nanoparticles in water were prepared with high yield by a novel one-step ultrasound assisted electrochemical process. Various strategies based on the addition of either tailor ... [more ▼]

Stable suspensions of gold nanoparticles in water were prepared with high yield by a novel one-step ultrasound assisted electrochemical process. Various strategies based on the addition of either tailor-made polymers or mixtures of commercially available polymers, in the electrochemical bath have been found successful to avoid nanoparticles aggregation commonly observed by sonoelectrochemistry. α-Methoxy-ω-mercapto-poly(ethylene oxide) or poly(vinyl pyrrolidone)/polyethylene oxide mixtures were able to build up a coalescence barrier around the gold nanoparticles. The results showed that the size of the gold nanoparticles could be easily tuned between 5 nm and 35 nm by simple control of the electrochemical parameters, i.e. the deposition time (TON) from 10 ms to 20 ms. The properties of as-prepared gold nanoparticles were compared to the ones of gold colloids prepared by the more conventional wet nanoprecipitation method using chemical reductive agents. [less ▲]

Detailed reference viewed: 83 (12 ULg)
Full Text
Peer Reviewed
See detailElectrografting of thin polymer films: Three strategies for the tailoring of functional adherent coatings
Voccia, Samuel; Gabriel, Sabine ULg; Serwas, Harry et al

in Progress in Organic Coatings (2006), 55(2), 175-181

Cathodic electrografting is an efficient technique to impart adhesion to poly(meth)acrylate coatings onto inorganic conducting surfaces. Although this technique was restricted for many years to very few ... [more ▼]

Cathodic electrografting is an efficient technique to impart adhesion to poly(meth)acrylate coatings onto inorganic conducting surfaces. Although this technique was restricted for many years to very few monomers ((meth)acrylonitrile and (meth)acrylates) and to deposition of very thin polymer films, recent developments have overcome these limitations. First of all, classical controlled/living polymerization techniques have been combined with cathodic electrografting as a powerful strategy for tuning thickness, properties and reactivity of the chemisorbed organic films. Secondly, thanks to the successful electrografting of a new reactive monomer bearing an activated ester, electrografted surfaces are now available for further derivatization by a wide variety of nucleophiles. Finally, the electrografting process has been extended to the direct electrografting of reactive polymers, i.e. preformed polymers beating pendant acrylic functions, which opens the way to the grafting of, e.g., polycondensates. [less ▲]

Detailed reference viewed: 23 (2 ULg)