References of "Servais, Christian"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLong-term evolution and seasonal modulation of methanol above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULg; Stavrakou, T; Muller, J-F et al

in Atmospheric Measurement Techniques (2014), 7

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth's atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5° N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected υ8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995–2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June–July, minimum columns in winter and a peak-to-peak amplitude of 130%. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 35 (17 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

Conference (2014, November 07)

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. We have successfully retrieved HCHO columns from ground-based Fourier Transform Infrared (FTIR) solar spectra and UV-Visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010 – December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5 °N, 8.0 °E, 3580 m a.s.l.). Characterization of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art Chemical Transport Models (CTMs), GEOS-Chem and IMAGESv2, have been compared to FTIR total columns and MAX-DOAS 3.6 – 8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTMs outputs as intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for HCHO above the Jungfraujoch station. [less ▲]

Detailed reference viewed: 10 (5 ULg)
Full Text
Peer Reviewed
See detailRecent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes
Mahieu, Emmanuel ULg; Chipperfield, M. P.; Notholt, J. et al

in Nature (2014), 515(7525), 104--107

The abundance of chlorine in the Earth’s atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the ... [more ▼]

The abundance of chlorine in the Earth’s atmosphere increased considerably during the 1970s to 1990s, following large emissions of anthropogenic long-lived chlorine-containing source gases, notably the chlorofluorocarbons. The chemical inertness of chlorofluorocarbons allows their transport and mixing throughout the troposphere on a global scale[1], before they reach the stratosphere where they release chlorine atoms that cause ozone depletion[2]. The large ozone loss over Antarctica[3] was the key observation that stimulated the definition and signing in 1987 of the Montreal Protocol, an international treaty establishing a schedule to reduce the production of the major chlorine- and bromine-containing halocarbons. Owing to its implementation, the near-surface total chlorine concentration showed a maximum in 1993, followed by a decrease of half a per cent to one per cent per year[4], in line with expectations. Remote-sensing data have revealed a peak in stratospheric chlorine after 1996[5], then a decrease of close to one per cent per year[6,7], in agreement with the surface observations of the chlorine source gases and model calculations[7]. Here we present ground-based and satellite data that show a recent and significant increase, at the 2σ level, in hydrogen chloride (HCl), the main stratospheric chlorine reservoir, starting around 2007 in the lower stratosphere of the Northern Hemisphere, in contrast with the ongoing monotonic decrease of near-surface source gases. Using model simulations, we attribute this trend anomaly to a slowdown in the Northern Hemisphere atmospheric circulation, occurring over several consecutive years, transporting more aged air to the lower stratosphere, and characterized by a larger relative conversion of source gases to HCl. This short-term dynamical variability will also affect other stratospheric tracers and needs to be accounted for when studying the evolution of the stratospheric ozone layer. [less ▲]

Detailed reference viewed: 11 (1 ULg)
Full Text
Peer Reviewed
See detailRetrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations
Franco, Bruno ULg; Hendrick, François; Van Roozendael, Michel et al

in Atmospheric Measurement Techniques. Papers in Open Discussion (2014), 7

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation ... [more ▼]

As a ubiquitous product of the oxidation of many Volatile Organic Compounds (VOCs), formaldehyde (HCHO) plays a key role as a short-lived and reactive intermediate in the atmospheric photo-oxidation pathways leading to the formation of tropospheric ozone and secondary organic aerosols. In this study, HCHO profiles have been successfully retrieved from ground-based Fourier Transform Infrared (FTIR) solar spectra and UV-Visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded during the July 2010–December 2012 time period at the Jungfraujoch station (Swiss Alps, 46.5 N, 8.0 E, 3580ma.s.l.). Analysis of the retrieved products has revealed different vertical sensitivity between both remote sensing techniques. Furthermore, HCHO amounts simulated by two state-of-the-art Chemical Transport Models (CTMs), GEOS-Chem and IMAGESv2, have been compared to FTIR total columns and MAX-DOAS 3.6–8 km partial columns, accounting for the respective vertical resolution of each ground-based instrument. Using the CTMs outputs as intermediate, FTIR and MAX-DOAS retrievals have shown consistent seasonal modulations of HCHO throughout the investigated period, characterized by summertime maximum and wintertime minimum. Such comparisons have also highlighted that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval above the Jungfraujoch station. [less ▲]

Detailed reference viewed: 12 (7 ULg)
See detailIncrease in northern hemisphere stratospheric hydrogen chloride over recent years
Mahieu, Emmanuel ULg; Chipperfield, MP; Notholt, J et al

Poster (2014, October 07)

Detailed reference viewed: 14 (2 ULg)
Full Text
See detailLong-term evolution and seasonal modulation above Jungfraujoch (46.5°N, 8.0°E): Optimisation of the retrieval strategy, comparison with model and independant observations
Bader, Whitney ULg; Stavrakou, J; Muller, J-F et al

Poster (2014, May)

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere after methane. In this work, we present the first long-term time series of methanol total, lower tropospheric and upper tropospheric-lower stratospheric partial columns derived from the analysis of high resolution Fourier transform infrared solar spectra recorded at the Jungfraujoch station (46.5°N, 3580 m a.s.l.). The retrieval of methanol is very challenging due to strong absorptions of ozone in the region of the selected 8 band of CH3OH. Two wide spectral intervals have been defined and adjusted in order to maximize the information content. Methanol does not exhibit a significant trend over the 1995-2012 time period, but a strong seasonal modulation characterized by maximum values and variability in June-July, minimum columns in winter and a peak-to-peak amplitude of 130 %. In situ measurements performed at the Jungfraujoch and ACE-FTS occultations give similar results for the methanol seasonal variation. The total and lower tropospheric columns are also compared with IMAGESv2 model simulations. There is no systematic bias between the observations and IMAGESv2 but the model underestimates the peak-to-peak amplitude of the seasonal modulations. [less ▲]

Detailed reference viewed: 19 (7 ULg)
Full Text
Peer Reviewed
See detailSpectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate
Mahieu, Emmanuel ULg; Zander, Rodolphe ULg; Toon, G. C. et al

in Atmospheric Measurement Techniques (2014), 7

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the ... [more ▼]

The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm−1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) × 1013 molec cm−2 yr−1 from 1989 to 1997, and (0.98 ± 0.02) × 1013 molec cm−2 yr−1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr−1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ± 1.3 and 11.1 ± 0.2 Gg yr−1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010. [less ▲]

Detailed reference viewed: 63 (21 ULg)
Full Text
Peer Reviewed
See detailTrends of ozone total columns and vertical distribution from FTIR observations at 8 NDACC stations around the globe
Vigouroux, C; Blumenstock, T; Coffey, M et al

in Atmospheric Chemistry & Physics Discussions (2014), 14

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2%, but also independent partial column amounts in about four ... [more ▼]

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2%, but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5–6%. We use eight of the Network for the Detection of Atmospheric Compososition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely: Ny-Alesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time-series varies by station, but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995–2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere, and at Wollongong for the total columns and the lower and middle stratospheric columns; at Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0 % decade−1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seems to be needed to observe it at the northern mid-latitude station. [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
See detailParallel measurements of formaldehyde (H2CO) at the Jungfraujoch station: preliminary FTIR results and first comparison with Max-DOAS data
Franco, Bruno ULg; Mahieu, Emmanuel ULg; Van Roozendael, Michel et al

Scientific conference (2013, October 17)

In the framework of the NORS project, a retrieval strategy for formaldehyde (H2CO) is currently under development, using measurements from ground-based high-resolution FTIR solar spectra recorded at the ... [more ▼]

In the framework of the NORS project, a retrieval strategy for formaldehyde (H2CO) is currently under development, using measurements from ground-based high-resolution FTIR solar spectra recorded at the NDACC high altitude station of the Jungfraujoch (Swiss Alps, 46.5° N, 8.0° E, 3580m a.s.l.). According to the preliminary results, our FTIR retrieval strategy based on Tikhonov regularization has proven able to make an improvement in the process of fitting the H2CO feature within the 2833.070 – 2833.350 cm-1 microwindow from Jungfraujoch solar spectra, compared to a simple scaling. Furthermore, the retrieved total columns present a seasonal cycle averaged over 2005 – 2013 in agreement with preliminary results from UV-visible MAX-DOAS observations, ACE-FTS occultation measurements and simulations from the IMAGES and GEOS-CHEM models. However, FTIR H2CO abundances appear to be underestimated during summertime, with respect to the other data sets. In order to solve this issue, further experiments are planned. [less ▲]

Detailed reference viewed: 28 (5 ULg)
Full Text
See detailOverview of the geophysical data derived from long-term FTIR monitoring activities at the Jungfraujoch NDACC site (46.5ºN) and the PYGCHEM project
Mahieu, Emmanuel ULg; Bovy, Benoît ULg; Bader, Whitney ULg et al

Poster (2013, May 07)

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are ... [more ▼]

We present an overview of the geophysical data deduced from long-term monitoring activities conducted at the Jungfraujoch station by the University of Liège. Typical results and trend investigations are presented for hydrogen chloride (HCl) and carbonyl sulfide (OCS). We further display and briefly describe time series for new target gases, namely methanol (CH3OH) and HCFC-142b. We also show some preliminary results for ammonia (NH3) and peroxyacetyl nitrate (PAN). Finally, we present the PyGChem project, a Python interface to the GEOS-Chem model currently under development at ULg. [less ▲]

Detailed reference viewed: 92 (32 ULg)
Full Text
Peer Reviewed
See detailMeasurements of hydrogen cyanide (HCN) and acetylene (C2H2) from the Infrared Atmospheric Sounding Interferometer (IASI)
Duflot, V.; Hurtmans, D.; Clarisse, L. et al

in Atmospheric Measurement Techniques (2013), 6

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric ... [more ▼]

Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform InfraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values. [less ▲]

Detailed reference viewed: 86 (5 ULg)
Full Text
See detailEvolution of methanol (CH3OH) above the Jungfraujoch station (46.5°N) : Variability, seasonal modulation and long-term trend.
Bader, Whitney ULg; Mahieu, Emmanuel ULg; Lejeune, Bernard ULg et al

Poster (2013, April 09)

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere with concentrations close to a few ppbv, after methane, despite a short lifetime of a few days (Jacob et al., 2005 ... [more ▼]

Methanol (CH3OH) is the second most abundant organic compound in the Earth’s atmosphere with concentrations close to a few ppbv, after methane, despite a short lifetime of a few days (Jacob et al., 2005). Natural sources of CH3OH include plant growth, oceans, decomposition of plant matter, oxidation of methane and other VOCs,. . . while anthropogenic sources are from vehicles, industry,. . . biomass burning completes the emission budget. The main sink is the oxidation by hydroxyl radical, leading to the formation of carbon monoxide (CO) and formaldehyde (H2CO). The retrieval of methanol is very challenging due to the presence of strong absorption of ozone and its isotopologues in addition to water vapour and carbon dioxide in the region of the selected strong nu8 band of CH3OH. First retrievals from satellite observations using the Atmospheric Chemistry Experiment infrared Fourier Transform Spectrometer (ACE-FTS) on board the SCISAT satellite have been performed by Dufour et al. (2007 and references therein) using a spectral interval going from 995.5 to 1008.3 cm-1. In 2009, first retrievals from a ground-based FTS, using spectra recorded at Kitt Peak (31.9°N) and a window going from 992 to 999 cm-1 have been reported by Rinsland et al. (2009), followed by Vigouroux et al. (2012 and references therein) who used yet another spectral interval going from 1029 to 1037cm-1. From those former retrieval strategies and also considering the Mahieu et al. (2012) contribution, we redefined our spectral intervals to maximize the information content. Indeed, our first window, starting from 992 to 1008.3 cm-1, is issued from the merge of Rinsland et al. and Dufour et al. windows while our second, going from 1029 to 1037 cm-1, is the one used by Vigouroux et al.With this new combination of windows, we were able to enlarge the range of zenith angles providing robust results while maintaining good correlation between our two windows; this also resulted in an improvement of the fitting residuals and of the information content. We used the 2008 HITRAN compilation (Rothman et al., 2009) for spectroscopic parameters. However, systematic residuals still remain in the 1033 cm-1 region which are attributed to unsatisfactory line parameters for methanol. New cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al. 2012) and calibrated in intensity by using the reference spectra from the Pacific Northwest National Laboratory (PNNL) IR database will be tested as soon as converted into pseudolines. In this work, we will present the first long-term time series of methanol total columns, resulting from the implementation of our new retrieval strategy. All retrievals have been performed with the SFIT2 algorithm (v 3.91) (Rinsland et al., 1998) using a series of about 7 000 spectra recorded between 1995 and 2012, with zenith angles between 60 and 85°. These solar absorption observations have been recorded with a high-resolution FTIR Bruker 120HR instrument, at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). [less ▲]

Detailed reference viewed: 67 (21 ULg)
Full Text
See detailOzone tropospheric and stratospheric trends (1995-2012) at six ground-based FTIR stations (28°N to 79°N)
Vigouroux, Corinne; De Mazière, Martine; Demoulin, Philippe ULg et al

Poster (2013, April)

In the frame of the Network for the Detection of Atmospheric Composition Change (NDACC), contributing ground-based stations have joined their efforts to homogenize and optimize the retrievals of ozone ... [more ▼]

In the frame of the Network for the Detection of Atmospheric Composition Change (NDACC), contributing ground-based stations have joined their efforts to homogenize and optimize the retrievals of ozone profiles from FTIR (Fourier transform infrared) solar absorption spectra. Using the optimal estimation method, distinct vertical information can be obtained in four layers: ground-10 km, 10-18 km, 18-27 km, and 27-42 km, in addition to total column amounts. In a previous study, Vigouroux et al. (2008) applied a bootstrap resampling method to determine the trends of the ozone total and four partial columns, over the period 1995-2004 at Western European stations. The updated trends for the period 1995-2009 have been published in the WMO 2010 report. Here, we present the updated trends and their uncertainties, for the 1995-2012 period, for the different altitude ranges, above five European stations (28°N-79°N) and above the station Thule, Greenland (77°N). In this work, the trends have been estimated using a multiple regression model including some explanatory variables responsible for the ozone variability, such as the Quasi Biennial Oscillation (QBO), the solar flux, the Arctic Oscillation (AO) or El Niño-Southern Oscillation (ENSO). A major result is the significant positive trend of ozone in the upper stratosphere, observed at the Jungfraujoch (47°N), which is a typical mid-latitude site, as well as at the high latitude stations. This positive trend in the upper stratosphere at Jungfraujoch provides a sign of ozone recovery at mid-latitudes. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
See detailFirst retrievals of HCFC-142b from ground-based high resolution FTIR solar observations: application to high altitude Jungfraujoch spectra
Mahieu, Emmanuel ULg; O'Doherty, Simon; Reimann, Stefan et al

in Geophysical Research Abstracts (2013), 15

Hydrofluorocarbons (HCFCs) are the first substitutes to the long-lived ozone depleting halocarbons, in particular the chlorofluorocarbons (CFCs). Given the complete ban of the CFCs by the Montreal ... [more ▼]

Hydrofluorocarbons (HCFCs) are the first substitutes to the long-lived ozone depleting halocarbons, in particular the chlorofluorocarbons (CFCs). Given the complete ban of the CFCs by the Montreal Protocol, its Amendments and Adjustments, HCFCs are on the rise, with current rates of increase substantially larger than at the beginning of the 21st century. HCFC-142b (CH3CClF2) is presently the second most abundant HCFC, after HCFC-22 (CHClF2). It is used in a wide range of applications, including as a blowing foam agent, in refrigeration and air-conditioning. Its concentration will soon reach 25 ppt in the northern hemisphere, with mixing ratios increasing at about 1.1 ppt/yr [Montzka et al., 2011]. The HCFC-142b lifetime is estimated at 18 years. With a global warming potential of 2310 on a 100-yr horizon, this species is also a potent greenhouse gas [Forster et al., 2007]. First space-based retrievals of HCFC-142b have been reported by Dufour et al. [2005]. 17 occultations recorded in 2004 by the Canadian ACE-FTS instrument (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer, onboard SCISAT-1) were analyzed, using two microwindows (1132.5–1135.5 and 1191.5–1195.5 cm-1). In 2009, Rinsland et al. determined the HCFC-142b trend near the tropopause, from the analysis of ACE-FTS observations recorded over the 2004–2008 time period. The spectral region used in this study extended from 903 to 905.5 cm-1. In this contribution, we will present the first HCFC-142b measurements from ground-based high-resolution Fourier Transform Infrared (FTIR) solar spectra. We use observations recorded at the high altitude station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), with a Bruker 120HR instrument, in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). The retrieval of HCFC-142b is very challenging, with simulations indicating only weak absorptions, lower than 1% for low sun spectra and current concentrations. Among the four microwindows tested, the region extending from 900 to 906 cm-1 proved to be the most appropriate, with limited interferences, in particular from water vapor. A total column time series spanning the 2004-2012 time period will be presented, analyzed and critically discussed. After conversion of our total columns to concentrations, we will compare our results with in situ measurements performed in the northern hemisphere by the AGAGE network. [less ▲]

Detailed reference viewed: 81 (18 ULg)
Full Text
Peer Reviewed
See detailValidation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC
Kerzenmacher, T; Dils, B; Kumps, N et al

in Atmospheric Measurement Techniques (2012), 5

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de ... [more ▼]

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de Bruxelles (ULB). The IASI CO total column product for 2008 from the most recent FORLI retrieval version (20100815) is evaluated using correlative CO profile products retrieved from groundbased solar absorption Fourier transform infrared (FTIR) observations at the following FTIR spectrometer sites from the Network for the Detection of Atmospheric Composition Change (NDACC): Ny-Alesund, Kiruna, Bremen, Jungfraujoch, Izana and Wollongong. In order to have good statistics for the comparisons, we included all IASI data from the same day, within a 100 km radius around the ground-based stations. The individual ground-based data were adjusted to the lowest altitude of the co-located IASI CO profiles. To account for the different vertical resolutions and sensitivities of the ground-based and satellite measurements, the averaging kernels associated with the various retrieved products have been used to properly smooth coincident data products. It has been found that the IASI CO total column products compare well on average with the co-located ground-based FTIR total columns at the selected NDACC sites and that there is no significant bias for the mean values at all stations. [less ▲]

Detailed reference viewed: 67 (0 ULg)
Full Text
Peer Reviewed
See detailAnalysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations
Hendrick, F; Mahieu, Emmanuel ULg; Bodeker, G E et al

in Atmospheric Chemistry and Physics (2012), 12

The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5°N, 8.0°E) is assessed using ground-based FTIR and zenith ... [more ▼]

The trend in stratospheric NO2 column at the NDACC (Network for the Detection of Atmospheric Composition Change) station of Jungfraujoch (46.5°N, 8.0°E) is assessed using ground-based FTIR and zenith-scattered visible sunlight SAOZ measurements over the period 1990 to 2009 as well as a composite satellite nadir data set constructed from ERS-2/GOME, ENVISAT/SCIAMACHY, and METOP-A/GOME-2 observations over the 1996–2009 period. To calculate the trends, a linear least squares regression model including explanatory variables for a linear trend, the mean annual cycle, the quasi-biennial oscillation (QBO), solar activity, and stratospheric aerosol loading is used. For the 1990–2009 period, statistically indistinguishable trends of -3.7±1.1%/decade and -3.6±0.9%/decade are derived for the SAOZ and FTIR NO2 column time series, respectively. SAOZ, FTIR, and satellite nadir data sets show a similar decrease over the 1996–2009 period, with trends of -2.4±1.1%/decade, -4.3±1.4%/decade, and -3.6±2.2%/decade, respectively. The fact that these declines are opposite in sign to the globally observed +2.5%/decade trend in N2O, suggests that factors other than N2O are driving the evolution of stratospheric NO2 at northern mid-latitudes. Possible causes of the decrease in stratospheric NO2 columns have been investigated. The most likely cause is a change in the NO2/NO partitioning in favor of NO, due to a possible stratospheric cooling and a decrease in stratospheric chlorine content, the latter being further confirmed by the negative trend in the ClONO2 column derived from FTIR observations at Jungfraujoch. Decreasing ClO concentrations slows the NO+ ClO -> NO2 + Cl reaction and a stratospheric cooling slows the NO+O3 -> NO2 +O2 reaction, leaving more NOx in the form of NO. The slightly positive trends in ozone estimated from ground- and satellitebased data sets are also consistent with the decrease of NO2 through the NO2 +O3 -> NO3 +O2 reaction. Finally, we cannot rule out the possibility that a strengthening of the Dobson-Brewer circulation, which reduces the time available for N2O photolysis in the stratosphere, could also contribute to the observed decline in stratospheric NO2 above Jungfraujoch. [less ▲]

Detailed reference viewed: 124 (20 ULg)
Full Text
See detailLong-term trends of NO above northern mid-latitudes as inferred from Jungfraujoch, HALOE and ACE-FTS solar observations
Demoulin, Philippe ULg; Mahieu, Emmanuel ULg; Servais, Christian ULg et al

Poster (2012, August 27)

Routine FTIR solar observations are performed by the University of Liège at the Jungfraujoch station (Swiss Alps, 3580 m altitude, NDACC station) since 1985. The analysis of the recorded spectra allows to ... [more ▼]

Routine FTIR solar observations are performed by the University of Liège at the Jungfraujoch station (Swiss Alps, 3580 m altitude, NDACC station) since 1985. The analysis of the recorded spectra allows to derive total and partial columns of more than 20 different atmospheric gases. Among them, gases belonging to the total reactive nitrogen NOy (NO, NO2, HNO3 and ClONO2), to the total inorganic chlorine Cly (HCl and ClONO2) and to the total inorganic fluorine Fy (HF and COF2) families. In this communication, budgets of these gas families are investigated, and their short term, seasonal and inter-annual variations as well as their long-term trends are determined for the time period ranging from the mid-1980s up to the end of 2011. We also investigate the evolution of the same gases, when available, derived from ground-based UV-vis (1990-present) and from HALOE (1991-2004) and ACE-FTS (2004-present) satellite observations. We evaluate the consistency between the trends characterizing these various species, as deduced from the ground- and space-based time series. [less ▲]

Detailed reference viewed: 11 (3 ULg)
Full Text
See detailOzone tropospheric and stratospheric trends (1995-2011) at six ground-based FTIR stations (28°N to 79°N)
Vigouroux, Corinne; De Mazière, Martine; Demoulin, Philippe ULg et al

Poster (2012, August)

Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize ... [more ▼]

Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize the retrievals of ozone profiles from FTIR (Fourier transform infrared) solar absorption spectra. Using the optimal estimation method, distinct vertical information can be obtained in four layers: ground—10 km, 10—18 km, 18—27 km, and 27—42 km, in addition to total column amounts. Vigouroux et al. (2008) applied a bootstrap resampling method to the ozone data to determine the trends of the total columns and of the partial columns in the above four layers, over the period 1995-2004. The updated trends for the period 1995-2009 have been published in the WMO 2010 report. Here, we present the updated trends, obtained using the bootstrap resampling method, for the 1995-mid-2011 period, for the five European stations and also for the station Thule, Greenland (77°N), which has joined this effort. The trends have also been estimated using a multiple regression model including the Quasi Biennial Oscillation (QBO) and the solar flux as explanatory variables. The trends obtained by the two methods will be compared and discussed. One of the major results is the significant positive trend observed in the upper stratosphere at the station Jungfraujoch (47°N), which provides a sign of ozone recovery at mid-latitudes. Significant positive trends are also observed in the upper stratosphere at the high latitude stations. [less ▲]

Detailed reference viewed: 14 (0 ULg)
Full Text
See detailRetrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.
Bader, Whitney ULg; Perrin, Agnès; Jacquemart, David et al

Poster (2012, August)

Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth’s atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as ... [more ▼]

Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth’s atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as biomass burning, natural gas loss and biofuel consumption. The retrieval of ethane from ground-based infrared spectra is challenging. Indeed, ethane has a complicated spectrum with many interacting vibrational modes and the current state of ethane parameters in HITRAN (see http://www.hitran.com) was rather unsatisfactory in the 3 μm region. In fact, PQ branches outside the 2973–3001 cm-1 range are not included in HITRAN, and most P and R structures are missing. New ethane absorption cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al., 2010) are used in our retrievals. Pseudoline parameters fitted to these ethane spectra have been combined with HITRAN 2004 line parameters (including all the 2006 updates) for all other species encompassed in the selected microwindows. We evaluated the impact on spectral residuals induced by the update of two O3 lines (encompassed in the PQ3 µ-window) corrected by P. Chelin (LPMA, Paris, France). We also quantified the improvement brought by the update of the line positions and intensities of methyl chloride (CH3Cl) in the 3.4 µm region (Bray et al., 2011). The ethane a priori volume mixing ratio (VMR) profile and associated covariance are based on synthetic data from CHASER 3-D chemical transport model (CTM). In this contribution, we will present updated ethane (total) column retrievals, using the SFIT-2 algorithm (v3.91) and high-resolution Fourier Transform Infrared (FTIR) solar absorption observations recorded with a Bruker 120HR instrument, at the high altitude research station of the Jungfraujoch (46.5°N, 8°E, 3580 m asl), within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). Comparisons with synthetic data produced by two chemical transport models (CHASER and the one of the University of Oslo) will also be presented and analyzed, aiming at the determination and interpretation of long-term trends and interannual variations of ethane at Northern mid-latitudes. [less ▲]

Detailed reference viewed: 138 (27 ULg)