References of "Senten, C"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailObserved and simulated time evolution of HCl, ClONO2, and HF total column abundances
Kohlhepp, R; Ruhnke, R; Chipperfield, M P et al

in Atmospheric Chemistry and Physics (2012), 12(7), 3527--3556

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra ... [more ▼]

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05°N and 77.82°S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1%yr-1. The models simulate an increase of HF of around 1%yr-1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 70 (14 ULg)
Full Text
Peer Reviewed
See detailValidation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)
Dupuy, Eric; Walker, K. A.; Kar, J. et al

in Atmospheric Chemistry and Physics (2009), 9(2), 287-343

This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and ... [more ▼]

This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements. [less ▲]

Detailed reference viewed: 205 (23 ULg)
Full Text
See detailRetrievals of HCN from high-resolution FTIR solar spectra recorded at the Jungfraujoch station
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Demoulin, Philippe ULg et al

in Geophysical Research Abstracts (2007, April)

Recent investigations have resulted in the revision of the lifetime of hydrogen cyanide (HCN) from 2.5 years to 2-5 months, more in line with its important and well documented variability in the ... [more ▼]

Recent investigations have resulted in the revision of the lifetime of hydrogen cyanide (HCN) from 2.5 years to 2-5 months, more in line with its important and well documented variability in the troposphere. The main HCN source is believed to be biomass burning, making this species a useful tracer of fires, e.g. the widespread and intense 2004 boreal fires. Oxidation by the OH radical is among the identified sinks, while uptake by oceans has been hypothesized as the dominant sink. As shown by previous investigations, several lines from the nu3 fundamental HCN band at 3 μm can be used to retrieve information on vertical distribution of hydrogen cyanide from high-resolution FTIR solar absorption spectra. The major interfering gas in this region is water vapor. A series of typical observations recorded at the Jungfraujoch station (46.5ºN, 8.0ºE, 3580m asl, Swiss Alps) by the NDACC (Network for the Detection of Atmospheric Composition Change)-affiliated Bruker instrument have been fitted using various approaches to determine the optimum strategy to be used for HCN retrievals at that site, even under very wet conditions. The selected approach is made of 7 windows encompassing 5 HCN lines. The a priori information (HCN vertical distribution and covariance matrix) is based on ACE-FTS measurements performed over northern midlatitudes. The HITRAN-2004 spectroscopic line parameters including the August 2006 updates for water vapor have been adopted in the retrievals performed with the OEM-SFIT-2 (v3.91) algorithm. This contribution will give a full description of the adopted retrieval approach, including error budget and information content analysis. Tropospheric column time series of HCN from 1994 onwards will also be presented and discussed. [less ▲]

Detailed reference viewed: 67 (6 ULg)
See detailOptimisation of retrieval strategies using Jungfraujoch high-resolution FTIR observations for long-term trend studies and satellite validation.
Mahieu, Emmanuel ULg; Servais, Christian ULg; Duchatelet, Pierre ULg et al

in Burrows, J.; Borrell, P. (Eds.) Observing Tropospheric Trace Constituents from Space. (2007)

Detailed reference viewed: 4 (2 ULg)