References of "Sciortino, S"
     in
Bookmark and Share    
Full Text
See detailAthena+: The first Deep Universe X-ray Observatory
Barret, D.; Nandra, K.; Barcons, X. et al

in Cambresy, L.; Martins, F.; Nuss, E. (Eds.) et al SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (2013, November 01)

The Advanced Telescope for High-energy Astrophysics (Athena+) is being proposed to ESA as the L2 mission (for a launch in 2028) and is specifically designed to answer two of the most pressing questions ... [more ▼]

The Advanced Telescope for High-energy Astrophysics (Athena+) is being proposed to ESA as the L2 mission (for a launch in 2028) and is specifically designed to answer two of the most pressing questions for astrophysics in the forthcoming decade: How did ordinary matter assemble into the large scale structures we see today? and how do black holes grow and shape the Universe? For addressing these two issues, Athena+ will provide transformational capabilities in terms of angular resolution, effective area, spectral resolution, grasp, that will make it the most powerful X-ray observatory ever flown. Such an observatory, when opened to the astronomical community, will be used for virtually all classes of astrophysical objects, from high-z gamma-ray bursts to the closest planets in our solar neighborhood. In this paper, we briefly review the core science objectives of Athena+, present the science requirements and the foreseen implementation of the mission, and illustrate its transformational capabilities compared to existing facilities. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
See detailThe Hot and Energetic Universe: The X-ray Integral Field Unit (X-IFU) for Athena+
Barret, D.; den Herder, J. W.; Piro, L. et al

Report (2013)

The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the ... [more ▼]

The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the L2 and L3 missions of its science program. The Athena+ science payload consists of a large aperture high angular resolution X-ray optics and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2.5 eV spectral resolution, with ~5" pixels, over a field of view of 5 arc minutes in diameter. In this paper, we briefly describe the Athena+ mission concept and the X-IFU performance requirements. We then present the X-IFU detector and readout electronics principles, the current design of the focal plane assembly, the cooling chain and review the global architecture design. Finally, we describe the current performance estimates, in terms of effective area, particle background rejection, count rate capability and velocity measurements. Finally, we emphasize on the latest technology developments concerning TES array fabrication, spectral resolution and readout performance achieved to show that significant progresses are being accomplished towards the demanding X-IFU requirements. [less ▲]

Detailed reference viewed: 18 (3 ULg)
See detailThe Hot and Energetic Universe: Star formation and evolution
Sciortino, S.; Rauw, Grégor ULg; Audard, M. et al

Report (2013)

Stars over a wide range of masses and evolutionary stages are nowadays known to emit X-rays. This X-ray emission is a unique probe of the most energetic phenomena occurring in the circumstellar ... [more ▼]

Stars over a wide range of masses and evolutionary stages are nowadays known to emit X-rays. This X-ray emission is a unique probe of the most energetic phenomena occurring in the circumstellar environment of these stars, and provides precious insight on magnetic phenomena or hydrodynamic shocks. Owing to its large collecting area, Athena+ will open up an entirely new window on these phenomena. Indeed, Athena+ will not only allow us to study many more objects with an unprecedented spectral resolution, but will also pioneer the study of the dynamics of these objects via time-resolved high-resolution spectroscopy. In this way, Athena+ will be a unique tool to study accretion processes in TTauri stars, flaring activity in young stars, dynamos in ultra-cool dwarfs, small and large-scale structures in the winds of single massive stars, wind interactions in massive binary systems, hot bubbles in planetary nebula... All these studies will lead to a deeper understanding of yet poorly understood processes which have profound impact in star and planetary system formation as well as in feedback processes on Galactic scale. [less ▲]

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailORIGIN: metal creation and evolution from the cosmic dawn
den Herder, Jan-Willem; Piro, Luigi; Ohashi, Takaya et al

in Experimental Astronomy (2012), 34

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to ... [more ▼]

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts ( z ˜0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm[SUP]2[/SUP]/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ˜65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
See detailThe x-ray microcalorimeter spectrometer onboard Athena
den Herder, J. W.; Bagnali, D.; Bandler, S. et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2012, September 01)

One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter ... [more ▼]

One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena. In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given. [less ▲]

Detailed reference viewed: 46 (4 ULg)