References of "Schmidt, R"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFlux and color variations of the doubly imaged quasar UM673
Ricci, Davide ULg; Elyiv, Andrii ULg; Finet, François ULg et al

in Astronomy and Astrophysics (2013), 551

With the aim of characterizing the flux and color variations of the multiple components of the gravitationally lensed quasar UM673 as a function of time, we have performed multi-epoch and multi-band ... [more ▼]

With the aim of characterizing the flux and color variations of the multiple components of the gravitationally lensed quasar UM673 as a function of time, we have performed multi-epoch and multi-band photometric observations with the Danish 1.54m telescope at the La Silla Observatory. The observations were carried out in the VRi spectral bands during four seasons (2008--2011). We reduced the data using the PSF (Point Spread Function) photometric technique as well as aperture photometry. Our results show for the brightest lensed component some significant decrease in flux between the first two seasons (+0.09/+0.11/+0.05 mag) and a subsequent increase during the following ones (-0.11/-0.11/-0.10 mag) in the V/R/i spectral bands, respectively. Comparing our results with previous studies, we find smaller color variations between these seasons as compared with previous ones. We also separate the contribution of the lensing galaxy from that of the fainter and close lensed component. [less ▲]

Detailed reference viewed: 31 (13 ULg)
Full Text
Peer Reviewed
See detailZooming into the broad line region of the gravitationally lensed quasar Q2237+0305 = the Einstein Cross: III. Determination of the size and structure of the CIV and CIII] emitting regions using microlensing
Sluse, D.; Schmidt, R.; Courbin, F. et al

in Astronomy and Astrophysics (2011), 528

Aims: We aim to use microlensing taking place in the lensed quasar Q2237+0305 to study the structure of the broad line region and measure the size of the region emitting the CIV and CIII] lines. Methods ... [more ▼]

Aims: We aim to use microlensing taking place in the lensed quasar Q2237+0305 to study the structure of the broad line region and measure the size of the region emitting the CIV and CIII] lines. Methods: Based on 39 spectrophotometric monitoring data points obtained between Oct. 2004 and Dec. 2007, we derive lightcurves for the CIV and CIII] emission lines. We use three different techniques to analyse the microlensing signal. Different components of the lines (narrow, broad and very broad) are identified and studied. We build a library of simulated microlensing lightcurves which reproduce the signal observed in the continuum and in the lines provided only the source size is changed. A Bayesian analysis scheme is then developed to derive the size of the various components of the BLR. Results: 1. The half-light radius of the region emitting the CIV line is found to be R_CIV ~ 66^{+110}_{-46} lt-days = 0.06^{+0.09}_{-0.04} pc = 1.7^{+2.8}_{-1.1} 10^17 cm (at 68.3% CI). Similar values are obtained for CIII]. Relative sizes of the V-band continuum and of the carbon line emitting regions are also derived with median values of R(line)/R(cont) in the range [4,29], depending of the FWHM of the line component. 2. The size of the CIV emitting region agrees with the Radius-Luminosity relationship derived from reverberation mapping. Using the virial theorem we derive the mass of the black hole in Q2237+0305 to be M_BH ~ 10^{8.3+/-0.3} M_sun. 3. We find that the CIV and CIII] lines are produced in at least 2 spatially distinct regions, the most compact one giving rise to the broadest component of the line. The broad and narrow line profiles are slightly different for CIV and CIII]. 4. Our analysis suggests a different structure of the CIV and FeII+III emitting regions, with the latter being produced in the inner part of the BLR or in a less extended emitting region than CIV. [less ▲]

Detailed reference viewed: 31 (7 ULg)