References of "Schabus, Manuel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNeural precursors of delayed insight
Darsaud, Annabelle ULg; Wagner, Ullrich; Balteau, Evelyne ULg et al

in Journal of Cognitive Neuroscience (2011), 23(8), 1900-1910

The solution of a problem left unresolved in the evening can sometimes pop into mind as a sudden insight after a night of sleep in the following morning. Although favorable effects of sleep on insightful ... [more ▼]

The solution of a problem left unresolved in the evening can sometimes pop into mind as a sudden insight after a night of sleep in the following morning. Although favorable effects of sleep on insightful behavior have been experimentally confirmed, the neural mechanisms determining this delayed insight remain unknown. Here, using functional magnetic resonance imaging (fMRI), we characterize the neural precursors of delayed insight in the number reduction task (NRT), in which a hidden task structure can be learned implicitly, but can also be recognized explicitly in an insightful process, allowing immediate qualitative improvement in task performance. Normal volunteers practiced the NRT during two fMRI sessions (training and retest), taking place 12 hours apart after a night of sleep. After this delay, half of the subjects gained insight into the hidden task structure ("solvers," S), whereas the other half did not ("nonsolvers," NS). Already at training, solvers and nonsolvers differed in their cerebral responses associated with implicit learning. In future solvers, responses were observed in the superior frontal sulcus, posterior parietal cortex, and the insula, three areas mediating controlled processes and supporting early learning and novice performance. In contrast, implicit learning was related to significant responses in the hippocampus in nonsolvers. Moreover, the hippocampus was functionally coupled with the basal ganglia in nonsolvers and with the superior frontal sulcus in solvers, thus potentially biasing participants' strategy towards implicit or controlled processes of memory encoding, respectively. Furthermore, in solvers but not in nonsolvers, response patterns were further transformed overnight, with enhanced responses in ventral medial prefrontal cortex, an area previously implicated in the consolidation of declarative memory. During retest in solvers, before they gain insight into the hidden rule, significant responses were observed in the same medial prefrontal area. After insight, a distributed set of parietal and frontal areas is recruited among which information concerning the hidden rule can be shared in a so-called global workspace. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
Peer Reviewed
See detailSpontaneous neural activity during human slow wave sleep.
Dang Vu, Thien Thanh ULg; Schabus, Manuel ULg; Desseilles, Martin ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(39), 15160-5

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the ... [more ▼]

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions. [less ▲]

Detailed reference viewed: 132 (27 ULg)
Full Text
Peer Reviewed
See detailWavelength-dependent modulation of brain responses to a working memory task by daytime light exposure
Vandewalle, Gilles ULg; Gais, S.; Schabus, Manuel ULg et al

in Cerebral Cortex (2007), 17(12), 2788-2795

In addition to classical visual effects, light elicits nonvisual brain responses, which profoundly influence physiology and behavior. These effects are mediated in part by melanopsin-expressing light ... [more ▼]

In addition to classical visual effects, light elicits nonvisual brain responses, which profoundly influence physiology and behavior. These effects are mediated in part by melanopsin-expressing light-sensitive ganglion cells that, in contrast to the classical photopic system that is maximally sensitive to green light (550 nm), is very sensitive to blue light (470-480 nm). At present, there is no evidence that blue light exposure is effective in modulating nonvisual brain activity related to complex cognitive tasks. Using functional magnetic resonance imaging, we show that, while participants perform an auditory working memory task, a short (18 min) daytime exposure to blue (470 nm) or green (550 nm) monochromatic light (3 x 10(13) photons/cm(2)/s) differentially modulates regional brain responses. Blue light typically enhanced brain responses or at least prevented the decline otherwise observed following green light exposure in frontal and parietal cortices implicated in working memory, and in the thalamus involved in the modulation of cognition by arousal. Our results imply that monochromatic light can affect cognitive functions almost instantaneously and suggest that these effects are mediated by a melanopsin-based photoreceptor system. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailSleep transforms the cerebral trace of declarative memories
Gais, Steffen; Albouy, Geneviève ULg; Boly, Mélanie ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(47), 18778-18783

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid ... [more ▼]

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid synaptic consolidation, systems consolidation occurs within a time frame of days to years. For declarative memory, the latter is presumed to rely on an interaction between different brain regions, in particular the hippocampus and the medial prefrontal cortex (mPFC). Specifically, sleep has been proposed to provide a setting that supports such systems consolidation processes, leading to a transfer and perhaps transformation of memories. Using functional MRI, we show that postlearning sleep enhances hippocampal responses during recall of word pairs 48 h after learning, indicating intrahippocampal memory processing during sleep. At the same time, sleep induces a memory-related functional connectivity between the hippocampus and the mPFC. Six months after learning, memories activated the mPFC more strongly when they were encoded before sleep, showing that sleep leads to long-lasting changes in the representation of memories on a systems level. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailHemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep.
Schabus, Manuel ULg; Dang Vu, Thien Thanh ULg; Albouy, Geneviève ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2007), 104(32), 13164-9

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the ... [more ▼]

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleep-deprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance. [less ▲]

Detailed reference viewed: 74 (12 ULg)
Full Text
Peer Reviewed
See detailDreaming: a neuroimaging view
Dang Vu, Thien Thanh ULg; Desseilles, Martin ULg; Albouy, Geneviève ULg et al

in Schweizer Archiv Fur Neurologie und Psychiatrie (2005), 156

Detailed reference viewed: 12 (2 ULg)