References of "Sandel, B"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H[SUB]2[/SUB]O and HDO
Bertaux, Jean-Loup; Vandaele, Ann-Carine; Korablev, Oleg et al

in Nature (2007), 450

Venus has thick clouds of H[SUB]2[/SUB]SO[SUB]4[/SUB] aerosol particles extending from altitudes of 40 to 60km. The 60-100km region (the mesosphere) is a transition region between the 4day retrograde ... [more ▼]

Venus has thick clouds of H[SUB]2[/SUB]SO[SUB]4[/SUB] aerosol particles extending from altitudes of 40 to 60km. The 60-100km region (the mesosphere) is a transition region between the 4day retrograde superrotation at the top of the thick clouds and the solar-antisolar circulation in the thermosphere (above 100km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO[SUB]2[/SUB], HCl, HF, H[SUB]2[/SUB]O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60km. Here we report the detection of an extensive layer of warm air at altitudes 90-120km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the `cryosphere' above 100km. We also measured the mesospheric distributions of HF, HCl, H[SUB]2[/SUB]O and HDO. HCl is less abundant than reported 40years ago. HDO/H[SUB]2[/SUB]O is enhanced by a factor of ~2.5 with respect to the lower atmosphere, and there is a general depletion of H[SUB]2[/SUB]O around 80-90km for which we have no explanation. [less ▲]

Detailed reference viewed: 117 (3 ULg)
Peer Reviewed
See detailAuroral Precipitation during the Bastille Day Storm Recovery
Immel, T. J.; Mende, S. B.; Frey, H. U. et al

Conference (2001, December 01)

The recovery period following the geomagnetic storm of July 15-16, 2000 is marked by rapid changes in auroral morphology and brightness in the sunlit hemisphere. These observations are made by the FUV and ... [more ▼]

The recovery period following the geomagnetic storm of July 15-16, 2000 is marked by rapid changes in auroral morphology and brightness in the sunlit hemisphere. These observations are made by the FUV and EUV imagers aboard the IMAGE satelite. Clear signatures of magnetospheric convection are observed in the motion of the auroral forms, indicating sunward convection of plasma in the polar cap under the strong northward component of the IMF. Precipitation is also observed equatorward of the auroral oval on the dayside in large diffuse arcs. Unlike previously observed detached proton arcs, this precipitation appears to have a significant electron component. Determination of the characteristic energies and fluxes of electrons and protons requires the proper removal of FUV airglow emissions, which in this case have been strongly affected by the recent magnetic activity. EUV images provide a very clear signature of these events, with practically no airglow contamination. With proper modeling, these EUV images could provide improvements to the characterization of the magnetospheric energy input to the thermosphere and ionosphere from space-based imaging. [less ▲]

Detailed reference viewed: 32 (4 ULg)