References of "Sana, H"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailB fields in OB stars (BOB). Detection of a strong magnetic field in the O9.7 V star HD 54879
Castro, N.; Fossati, L.; Hubrig, S. et al

in Astronomy and Astrophysics (2015), 581

The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability ... [more ▼]

The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD 54879, a single slowly rotating O9.7 V star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code fastwind results in an effective temperature and a surface gravity of 33 000 ± 1000 K and 4.0 ± 0.1 dex. The abundances of carbon, nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate line-profile variability in HD 54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The photospheric lines remain constant in shape between 2009 and 2014, although Hα shows a variable emission. The Hα emission is too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal chemical composition and the absence of photospheric line profile variations make HD 54879 the most strongly magnetic, non-variable single O-star detected to date. Based on observations made with ESO telescopes at the La Silla and Paranal observatories under programme ID 191.D-0255(C, F).Appendix A is available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201425354/olm">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 29 (1 ULg)
Full Text
Peer Reviewed
See detailB fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa
Fossati, L.; Castro, N.; Morel, Thierry ULg et al

in Astronomy and Astrophysics (2015), 574

Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD44743; B1 II/III) and epsilon CMa (HD52089; B1.5 ... [more ▼]

Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD44743; B1 II/III) and epsilon CMa (HD52089; B1.5 II). For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field. We determined the physical parameters of both stars and characterise their X-ray spectrum. For beta CMa, our mode identification analysis led to determining a rotation period of 13.6+/-1.2 days and of an inclination angle of the rotation axis of 57.6+/-1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of ~22 degrees and a dipolar magnetic field strength (Bd) of ~100 G (60<Bd<230 G within 1 sigma), below what is typically found for other magnetic massive stars. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this star, we determine that the rotation period ranges between 1.3 and 24 days. Both stars are expected to have a dynamical magnetosphere. We also conclude that both stars are most likely core hydrogen burning and that they have spent more than 2/3 of their main sequence lifetime. A histogram of the distribution of the dipolar magnetic field strength for the magnetic massive stars known to date does not show the magnetic field "desert" observed instead for intermediate-mass stars. The biases involved in the detection of (weak) magnetic fields in massive stars with the currently available instrumentation and techniques imply that weak fields might be more common than currently observed. Our results show that, if present, even relatively weak magnetic fields are detectable in massive stars and that more observational effort is probably still needed to properly access the magnetic field incidence. [less ▲]

Detailed reference viewed: 32 (6 ULg)
Full Text
Peer Reviewed
See detailB fields in OB stars (BOB): low-resolution FORS2 spectropolarimetry of the first sample of 50 massive stars
Fossati, L.; Castro, N.; Schoeller, M. et al

in Astronomy and Astrophysics (2015), 582

Within the context of the collaboration "B fields in OB stars (BOB)", we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference ... [more ▼]

Within the context of the collaboration "B fields in OB stars (BOB)", we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference magnetic massive stars. Because of the many controversies of magnetic field detections obtained with the FORS instruments, we derived the magnetic field values with two completely independent reduction and analysis pipelines. We compare and discuss the results obtained from the two pipelines. We obtained a general good agreement, indicating that most of the discrepancies on magnetic field detections reported in the literature are caused by the interpretation of the significance of the results (i.e., 3-4 sigma detections considered as genuine, or not), instead of by significant differences in the derived magnetic field values. By combining our results with past FORS1 measurements of HD46328, we improve the estimate of the stellar rotation period, obtaining P = 2.17950+/-0.00009 days. For HD125823, our FORS2 measurements do not fit the available magnetic field model, based on magnetic field values obtained 30 years ago. We repeatedly detect a magnetic field for the O9.7V star HD54879, the HD164492C massive binary, and the He-rich star CPD -57 3509. We obtain a magnetic field detection rate of 6+/-4%, while by considering only the apparently slow rotators we derive a detection rate of 8+/-5%, both comparable with what was previously reported by other similar surveys. We are left with the intriguing result that, although the large majority of magnetic massive stars is rotating slowly, our detection rate is not a strong function of the stellar rotational velocity. [less ▲]

Detailed reference viewed: 21 (3 ULg)
Full Text
Peer Reviewed
See detailSouthern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection
Sana, H.; Le Bouquin, J.-B.; Lacour, S. et al

in Astrophysical Journal Supplement Series (2014), 215

Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at ... [more ▼]

Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected ph [less ▲]

Detailed reference viewed: 12 (3 ULg)
Full Text
See detailThe B Fields in OB Stars (BOB) Survey
Morel, Thierry ULg; Castro, N.; Fossati, L. et al

in The Messenger (2014), 157

The B fields in OB stars (BOB) survey is an ESO Large Programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ... [more ▼]

The B fields in OB stars (BOB) survey is an ESO Large Programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. A total of 98 objects was observed over 20 nights with FORS2 and HARPSpol to July 2014. Preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these stars. We also discuss some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects. [less ▲]

Detailed reference viewed: 29 (4 ULg)
Full Text
See detailThe B Fields in OB Stars (BOB) Survey
Morel, Thierry ULg; Castro, N.; Fossati, L. et al

in IAU Symposium (2014)

The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ... [more ▼]

The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects. [less ▲]

Detailed reference viewed: 27 (3 ULg)
Full Text
Peer Reviewed
See detailX-ray properties of the young open clusters HM1 and IC 2944/2948
Nazé, Yaël ULg; Rauw, Grégor ULg; Sana, H. et al

in Astronomy and Astrophysics (2013), 555

Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or ... [more ▼]

Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or foreground objects. Most massive stars in both clusters display the usual high-energy properties of that type of objects, though with log [L[SUB]X[/SUB]/L[SUB]BOL[/SUB]] apparently lower in HM1 than in IC 2944/2948. Compared with studies of other clusters, it seems that a low signal-to-noise ratio at soft energies, due to the high extinction, may be the main cause of this difference. In HM1, the two Wolf-Rayet stars show contrasting behaviors: WR89 is extremely bright, but much softer than WR87. It remains to be seen whether wind-wind collisions or magnetically confined winds can explain these emissions. In IC 2944/2948, the X-ray sources concentrate around HD 101205; a group of massive stars to the north of this object is isolated, suggesting that there exist two subclusters in the field-of-view. Tables 2, 5, and Figs. 5, 9 are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A>Based on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).Tables 1, 3 and 4 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A83">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A83</A> [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
See detailRecent results on the hierarchical triple system HD 150136
Gosset, Eric ULg; Berger, J. P.; Absil, Olivier ULg et al

in Bonanos, Alceste (Ed.) Massive Stars: From alpha to Omega (2013, June 01)

HD 150136 is a hierarchical triple system, non-thermal radio emitter, made of three O stars totalling some 130 solar masses. The 2.67-day inner orbit is rather well-known. Recent works derived a good ... [more ▼]

HD 150136 is a hierarchical triple system, non-thermal radio emitter, made of three O stars totalling some 130 solar masses. The 2.67-day inner orbit is rather well-known. Recent works derived a good approximation for the outer orbit with a period of 3000 days. We report here on interferometric observations that allow us to angularly resolve the outer orbit. First evidences for an astrometric displacement are given. The determination of the outer system orbit gives access to the inclinations of the systems and to the masses, including the one of the O3-O3.5 primary star. [less ▲]

Detailed reference viewed: 27 (9 ULg)
Full Text
Peer Reviewed
See detailThree-dimensional orbits of the triple-O stellar system HD 150136
Sana, H.; Le Bouquin, J.-B.; Mahy, Laurent et al

in Astronomy and Astrophysics (2013), 553

Context. HD 150136 is a triple hierarchical system and a non-thermal radio emitter. It is formed by an O3-3.5 V + O5.5-6 V close binary and a more distant O6.5-7 V tertiary. So far, only the inner orbital ... [more ▼]

Context. HD 150136 is a triple hierarchical system and a non-thermal radio emitter. It is formed by an O3-3.5 V + O5.5-6 V close binary and a more distant O6.5-7 V tertiary. So far, only the inner orbital properties have been reliably constrained. Aims. To quantitatively understand the non-thermal emission process, accurate knowledge of the physical and orbital properties of the object is crucial. Here, we aim to investigate the orbital properties of the wide system and to constrain the inclinations of the inner and outer binaries, and with these the absolute masses of the system components. Methods. We used the PIONIER combiner at the Very Large Telescope Interferometer to obtain the very first interferometric measurements of HD 150136. We combined the interferometric observations with new and existing high resolution spectroscopic data to derive the orbital solution of the outer companion in the three-dimensional space. Results. The wide system is clearly resolved by PIONIER, with a projected separation on the plane of the sky of about 9 milli-arcsec. The best-fit orbital period, eccentricity, and inclination are 8.2 yr, 0.73 and 108 degr. We constrain the masses of the three stars of the system to 63 +/- 10, 40 +/- 6, and 33 +/- 12 Msun for the O3-3.5 V, O5.5-6 V and O6.5-7 V components. Conclusions. The dynamical masses agree within errors with the evolutionary masses of the components. Future interferometric and spectroscopic monitoring of HD 150136 should allow one to reduce the uncertainties to a few per cent only and to accurately constrain the distance to the system. This makes HD 150136 an ideal system to quantitatively test evolutionary models of high-mass stars as well as the physics of non-thermal processes occurring in O-type systems. [less ▲]

Detailed reference viewed: 33 (3 ULg)
See detailQuantitative NIR Spectroscopy of Massive Stars
Sana, H.; Stap, F. A.; de Koter, A. et al

in Astronomical Society of the Pacific Conference Series (2013, January 01)

Interest for near-infrared (NIR) spectroscopy of massive stars has been dramatically increasing over the last decade. Because it allows one to observe objects inaccessible at optical wavelengths due to ... [more ▼]

Interest for near-infrared (NIR) spectroscopy of massive stars has been dramatically increasing over the last decade. Because it allows one to observe objects inaccessible at optical wavelengths due to absorption, the infrared domain offers a privileged window to study highly extinguished objects. Yet, a detailed calibration of the massive star properties at NIR wavelength is still missing. Following the lines of the work of Repolust et al. (2005), we have acquired high resolution spectroscopy of several nearby massive stars using VLT/CRIRES, focusing on spectral lines of interest in the J, H, K, and L bands. In this work, we present the earliest results of our quantitative spectroscopic analysis of the main sequence stars in our sample. Using the unique combination of a genetic algorithm approach with the state-of-the-art non-LTE atmosphere model FASTWIND, we compare the stellar and wind properties as derived from the optical and the NIR regime. [less ▲]

Detailed reference viewed: 15 (4 ULg)
Full Text
Peer Reviewed
See detailBinary Interaction Dominates the Evolution of Massive Stars
Sana, H.; de Mink, S. E.; de Koter, A. et al

in Science (2012), 337(6093), 444-446

The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on ... [more ▼]

The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae. [less ▲]

Detailed reference viewed: 37 (22 ULg)
Full Text
Peer Reviewed
See detailThe long period eccentric orbit of the particle accelerator HD 167971 revealed by long baseline interferometry
De Becker, Michaël ULg; Sana, H; Absil, Olivier ULg et al

in Monthly Notices of the Royal Astronomical Society (2012), 423

Using optical long baseline interferometry, we resolved for the first time the two wide components of HD167971, a candidate hierarchical triple system known to efficiently accelerate particles. Our multi ... [more ▼]

Using optical long baseline interferometry, we resolved for the first time the two wide components of HD167971, a candidate hierarchical triple system known to efficiently accelerate particles. Our multi-epoch VLTI observations provide direct evidence for a gravitational link between the O8 supergiant and the close eclipsing O + O binary. The separation varies from 8 to 15 mas over the three-year baseline of our observations, suggesting that the components evolve on a wide and very eccentric orbit (most probably e>0.5). These results provide evidence that the wide orbit revealed by our study is not coplanar with the orbit of the inner eclipsing binary. From our measurements of the near-infrared luminosity ratio, we constrain the spectral classification of the components in the close binary to be O6-O7, and confirm that these stars are likely main-sequence objects. Our results are discussed in the context of the bright non-thermal radio emission already reported for this system, and we provide arguments in favour of a maximum radio emission coincident with periastron passage. HD167971 turns out to be an efficient O-type particle accelerator that constitutes a valuable target for future high angular resolution radio imaging using VLBI facilities. [less ▲]

Detailed reference viewed: 31 (8 ULg)
Full Text
Peer Reviewed
See detail9 Sagittarii: uncovering an O-type spectroscopic binary with an 8.6 year period
Rauw, Grégor ULg; Sana, H.; Spano, M. et al

in Astronomy and Astrophysics (2012), 542

Context. The O-type object 9 Sgr is a well-known synchrotron radio emitter. This feature is usually attributed to colliding-wind binary systems, but 9 Sgr was long considered a single star. <BR /> Aims ... [more ▼]

Context. The O-type object 9 Sgr is a well-known synchrotron radio emitter. This feature is usually attributed to colliding-wind binary systems, but 9 Sgr was long considered a single star. <BR /> Aims: We have conducted a long-term spectroscopic monitoring of this star to investigate its multiplicity and search for evidence for wind-wind interactions. <BR /> Methods: Radial velocities are determined and analysed using various period search methods. Spectral disentangling is applied to separate the spectra of the components of the binary system. <BR /> Results: We derive the first ever orbital solution of 9 Sgr. The system is found to consist of an O3.5 V((f[SUP]+[/SUP])) primary and an O5-5.5 V((f)) secondary moving around each other on a highly eccentric (e = 0.7), 8.6 year orbit. The spectra reveal no variable emission lines that could be formed in the wind interaction zone in agreement with the expected properties of the interaction in such a wide system. <BR /> Conclusions: Our results provide further support to the paradigm of synchrotron radio emission from early-type stars being a manifestation of interacting winds in a binary system. Based on observations collected at the European Southern Observatory (La Silla, Chile and Cerro Paranal, Chile) and the San Pedro Mártir observatory (Mexico).Appendix A is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A>The reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A95">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A95</A> [less ▲]

Detailed reference viewed: 32 (1 ULg)
Full Text
Peer Reviewed
See detailThe Struve-Sahade effect in the optical spectra of O-type binaries. I. Main-sequence systems (Corrigendum)
Linder, N.; Rauw, Grégor ULg; Sana, H. et al

in Astronomy and Astrophysics (2012), 541

Detailed reference viewed: 14 (0 ULg)
Full Text
Peer Reviewed
See detailEvidence for a physically bound third component in HD 150136
Mahy, Laurent ULg; Gosset, Eric ULg; Sana, H et al

in Astronomy and Astrophysics (2012), 540

Context. HD 150136 is one of the nearest systems harbouring an O3 star. Although this system was considered for a long time as a binary, more recent investigations have suggested the possible existence of ... [more ▼]

Context. HD 150136 is one of the nearest systems harbouring an O3 star. Although this system was considered for a long time as a binary, more recent investigations have suggested the possible existence of a third component. <BR /> Aims: We present a detailed analysis of HD 150136 to test its triple nature. In addition, we investigate the physical properties of the individual components of this system. <BR /> Methods: We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. <BR /> Results: We offer clear evidence that HD 150136 is a triple system composed of an O3V((f[SUP]∗[/SUP]))-3.5V((f[SUP]+[/SUP])), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 M[SUB]&sun;[/SUB] for the primary, the secondary and the third components by assuming an inclination of 49° (sin[SUP]3[/SUP]i = 0.43). It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy. <BR /> Conclusions: We confirm there is a tertiary star in the spectrum of HD 150136 and show that it is physically bound to the inner binary system. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. Table 1 is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailA spectroscopic investigation of early-type stars in the young open cluster Westerlund 2
Rauw, Grégor ULg; Sana, H.; Nazé, Yaël ULg

in Astronomy and Astrophysics (2011), 535

Context. The distance of the very young open cluster <ASTROBJ>Westerlund 2</ASTROBJ>, which contains the very massive binary system <ASTROBJ>WR 20a</ASTROBJ> and is likely associated with a TeV source ... [more ▼]

Context. The distance of the very young open cluster <ASTROBJ>Westerlund 2</ASTROBJ>, which contains the very massive binary system <ASTROBJ>WR 20a</ASTROBJ> and is likely associated with a TeV source, has been the subject of much debate. <BR /> Aims: We attempt a joint analysis of spectroscopic and photometric data of eclipsing binaries in the cluster to constrain its distance. <BR /> Methods: A sample of 15 stars, including three eclipsing binaries (<ASTROBJ>MSP 44</ASTROBJ>, <ASTROBJ>MSP 96</ASTROBJ>, and <ASTROBJ>MSP 223</ASTROBJ>) was monitored with the FLAMES multi-object spectrograph. The spectroscopic data are analysed together with existing B V photometry. <BR /> Results: The analysis of the three eclipsing binaries clearly supports the larger values of the distance, around 8 kpc, and rules out values of about 2.4 - 2.8 kpc that have been suggested in the literature. Furthermore, our spectroscopic monitoring reveals no clear signature of binarity with periods shorter than 50 days in either the WN6ha star <ASTROBJ>WR 20b</ASTROBJ>, the early O-type stars <ASTROBJ>MSP 18</ASTROBJ>, <ASTROBJ>MSP 171</ASTROBJ>, <ASTROBJ>MSP 182</ASTROBJ>, <ASTROBJ>MSP 183</ASTROBJ>, <ASTROBJ>MSP 199</ASTROBJ>, and <ASTROBJ>MSP 203</ASTROBJ>, or three previously unknown mid O-type stars. The only newly identified candidate binary system is <ASTROBJ>MSP 167</ASTROBJ>. The absence of a binary signature is especially surprising for WR 20b and MSP 18, which were previously found to be bright X-ray sources. <BR /> Conclusions: The distance of Westerlund 2 is confirmed to be around 8 kpc as previously suggested based on the spectrophotometry of its population of O-type stars and the analysis of the light curve of WR 20a. Our results suggest that short-period binary systems are not likely to be common, at least not among the population of O-type stars in the cluster. Based on observations collected at the European Southern Observatory (Cerro Paranal, Chile).Appendix A is available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 20 (1 ULg)
Full Text
Peer Reviewed
See detailThe Non-thermal Radio Emitter HD 93250 Resolved by Long Baseline Interferometry
Sana, H.; Le Bouquin, J.-B.; De Becker, Michaël ULg et al

in Astrophysical Journal Letters (2011), 740

As the brightest O-type X-ray source in the Carina nebula, HD 93250 (O4 III(fc)) is X-ray overluminous for its spectral type and has an unusually hard X-ray spectrum. Two different scenarios have been ... [more ▼]

As the brightest O-type X-ray source in the Carina nebula, HD 93250 (O4 III(fc)) is X-ray overluminous for its spectral type and has an unusually hard X-ray spectrum. Two different scenarios have been invoked to explain its X-ray properties: wind-wind interaction and magnetic wind confinement. Yet, HD 93250 shows absolutely constant radial velocities over timescales of years suggesting either a single star, a binary system seen pole-on view or a very long period, and/or highly eccentric system. Using the ESO Very Large Telescope Interferometer, we resolved HD 93250 as a close pair with similar components. We measured a near-infrared flux ratio of 0.8 ± 0.1 and a separation of (1.5 ± 0.2) × 10-3 arcsec. At the distance of Carina, this corresponds to a projected physical distance of 3.5 AU. While a quantitative investigation would require a full characterization of the orbit, the binary nature of HD 93250 allows us to qualitatively explain both its X-ray flux and hardness and its non-thermal radio emission in the framework of a colliding wind scenario. We also discuss various observational biases. We show that, due to line blending of two similar spectral components, HD 93250 could have a period as short as 1 to several years despite the lack of measurable radial velocity variations. [less ▲]

Detailed reference viewed: 18 (1 ULg)
Full Text
Peer Reviewed
See detailThe massive star binary fraction in young open clusters - III. IC 2944 and the Cen OB2 association
Sana, H.; James, G.; Gosset, Eric ULg

in Monthly Notices of the Royal Astronomical Society (2011), 416

Using an extended set of multi-epoch high-resolution high signal-to-noise ratio optical spectra, we readdress the multiplicity properties of the O-type stars in IC 2944 and in the Cen OB2 association. We ... [more ▼]

Using an extended set of multi-epoch high-resolution high signal-to-noise ratio optical spectra, we readdress the multiplicity properties of the O-type stars in IC 2944 and in the Cen OB2 association. We present new evidence of binarity for five objects and we confirm the multiple nature of another two. We derive the first orbital solutions for HD 100099, HD 101436 and HD 101190 and we provide additional support for HD 101205 being a quadruple system. The minimal spectroscopic binary fraction in our sample is f[SUB]min[/SUB]= 0.57. Using numerical simulations, we show that the detection rate of our observational campaign is close to 90 per cent, leaving thus little room for undetected spectroscopic binary systems. The statistical properties of the O-star population in IC 2944 are similar, within the uncertainties, to the results obtained in the earlier papers in this series despite the fact that sample size effects limit the significance of the comparison. Using newly derived spectroscopic parallaxes, we reassess the distance to IC 2944 and obtained 2.3 ± 0.3 kpc, in agreement with previous studies. We also confirm that, as far as the O stars are concerned, the IC 2944 cluster is most likely a single entity. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailThe multiplicity of O-type stars in NGC 2244
Mahy, Laurent ULg; Rauw, Grégor ULg; Martins, F. et al

in Bulletin de la Societe Royale des Sciences de Liege (2011), 80

The investigation of the multiplicity of massive stars is crucial to determine a robust binary fraction but also for understanding the physical properties of these objects. In this contribution, we will ... [more ▼]

The investigation of the multiplicity of massive stars is crucial to determine a robust binary fraction but also for understanding the physical properties of these objects. In this contribution, we will present the main results from our long-term spectroscopic survey devoted to the young open cluster NGC 2244. We discuss the spectral classification, the projected rotational velocity (v sin{i}) and the multiplicity of O-stars. The stellar and wind parameters of each star, obtained using the CMFGEN atmosphere code, help us to better constrain the individual properties of these objects. Several of these stars were observed by the CoRoT satellite (SRa02) in the Asteroseismology channel. This intensive monitoring and the unprecedented quality of the light curves allow us to shed a new light on these objects. [less ▲]

Detailed reference viewed: 24 (2 ULg)
Full Text
Peer Reviewed
See detailA New Investigation of the Binary HD 48099
Mahy, Laurent ULg; Rauw, Grégor ULg; Martins, F. et al

in Astrophysical Journal (2010), 708

With an orbital period of about 3.078 days, the double-lined spectroscopic binary HD 48099 is, until now, the only short-period O+O system known in the Mon OB2 association. Even though an orbital solution ... [more ▼]

With an orbital period of about 3.078 days, the double-lined spectroscopic binary HD 48099 is, until now, the only short-period O+O system known in the Mon OB2 association. Even though an orbital solution has already been derived for this system, few information are available about the individual stars. We present, in this paper, the results of a long-term spectroscopic campaign. We derive a new orbital solution and apply a disentangling method to recover the mean spectrum of each star. To improve our knowledge concerning both components, we determine their spectral classifications and their projected rotational velocities. We also constrain the main stellar parameters of both stars by using the CMFGEN atmosphere code and provide the wind properties for the primary star through the study of International Ultraviolet Explorer spectra. This investigation reveals that HD 48099 is an O5.5 V ((f)) + O9 V binary with M [SUB]1[/SUB]sin[SUP]3[/SUP] i = 0.70 M [SUB]sun[/SUB] and M [SUB]2[/SUB]sin[SUP]3[/SUP] i = 0.39 M [SUB]sun[/SUB], implying a rather low orbital inclination. This result, combined with both a large effective temperature and log g, suggests that the primary star (vsin i sime 91 km s[SUP]â 1[/SUP]) is actually a fast rotator with a strongly clumped wind and a nitrogen abundance of about 8 times the solar value. [less ▲]

Detailed reference viewed: 34 (4 ULg)