References of "Samuel, B"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHigh angular resolution imaging and infrared spectroscopy of CoRoT candidates
Guenther, E. W.; Fridlund, M.; Alonso, R. et al

in Astronomy and Astrophysics (2013), 556

Context. Studies of transiting extrasolar planets are of key importance for understanding the nature of planets outside our solar system because their masses, diameters, and bulk densities can be measured ... [more ▼]

Context. Studies of transiting extrasolar planets are of key importance for understanding the nature of planets outside our solar system because their masses, diameters, and bulk densities can be measured. An important part of transit-search programmes is the removal of false-positives. In the case of the CoRoT space mission, the majority of the false-positives are removed by a detailed analysis of the light curves and by seeing-limited imaging in- and out-of-transit. However, the critical question is how many of the candidates that passed all these tests are false-positives. Such false-positives can be caused by eclipsing binaries, which are either related or unrelated to the targets. <BR /> Aims: For our study we selected 25 CoRoT candidates that have already been screened against false-positives using detailed analysis of the light curves and seeing-limited imaging, which has transits that are between 0.7 and 0.05% deep. Our aim is to search for companion candidates that had not been recognized in previous observations. <BR /> Methods: We observed 20 candidates with the adaptive optics imager NaCo and 18 with the high-resolution infrared spectrograph CRIRES. <BR /> Results: We found previously unknown stars within 2'' of the targets in seven of the candidates. All of these are too faint and too close to the targets to have been previously detected with seeing-limited telescopes in the optical. Our study thus leads to the surprising results that if we remove all candidates excluded by the sophisticated analysis of the light-curve, as well as carrying out deep imaging with seeing-limited telescopes, still 28-35% of the remaining candidates are found to possess companions that are bright enough to be false-positives. <BR /> Conclusions: Given that the companion candidates cluster around the targets and that the J - K colours are consistent with physical companions, we conclude that the companion candidates are more likely to be physical companions rather than unrelated field stars. Based on observations obtained at the European Southern Observatory at Paranal, Chile in programmes 282.C-5015A, 282.C-5015B, 282.C-5015C, 285.C-5045A, and 285.C-5045B, 086.C-0235A, 086.C-0235B, 088.C-0707A, 088.C-0707B, 090.C-0251A, 090.C-0251B, and 091.C-203(A).Appendices A and B are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets
Almenara, J. M.; Bouchy, F.; Gaulme, P. et al

in Astronomy and Astrophysics (2013), 555

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations ... [more ▼]

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations through optical photometry and radial velocity measurements secured the planetary nature of the transiting body and allowed us to fully characterize them. For CoRoT-25b we found a planetary mass of 0.27 ± 0.04 M[SUB]Jup[/SUB], a radius of 1.08[SUB]-0.10[/SUB][SUP]+0.3[/SUP] R[SUB]Jup[/SUB] and hence a mean density of 0.15[SUB]-0.06[/SUB][SUP]+0.15[/SUP] g cm[SUP]-3[/SUP]. The planet orbits an F9 main-sequence star in a 4.86-day period, that has a V magnitude of 15.0, solar metallicity, and an age of 4.5[SUB]-2.0[/SUB][SUP]+1.8[/SUP]-Gyr. CoRoT-26b orbits a slightly evolved G5 star of 9.06 ± 1.5-Gyr age in a 4.20-day period that hassolar metallicity and a V magnitude of 15.8. With a mass of 0.52 ± 0.05 M[SUB]Jup[/SUB], a radius of 1.26[SUB]-0.07[/SUB][SUP]+0.13[/SUP] R[SUB]Jup[/SUB], and a mean density of 0.28[SUB]-0.07[/SUB][SUP]+0.09[/SUP] g cm[SUP]-3[/SUP], it belongs to the low-mass hot-Jupiter population. Planetary evolution models allowed us to estimate a core mass of a few tens of Earth mass for the two planets with heavy-element mass fractions of 0.52[SUB]-0.15[/SUB][SUP]+0.08[/SUP] and 0.26[SUB]-0.08[/SUB][SUP]+0.05[/SUP], respectively, assuming that a small fraction of the incoming flux is dissipated at the center of the planet. In addition, these models indicate that CoRoT-26b is anomalously large compared with what standard models could account for, indicating that dissipation from stellar heating could cause this size. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Partly based on observations obtained at the European Southern Observatory at Paranal and La Silla, Chile in programs 083.C-0690(A), 184.C-0639. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XXI. CoRoT-19b: A low density planet orbiting an old inactive F9V-star
Guenther, E. W.; Diaz, R. F.; Gazzano, J-C et al

in Astronomy and Astrophysics (2012), 537

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to ... [more ▼]

Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M*=1.21+/-0.05 Msun and radius R*=1.65+/-0.04 Rsun. The planet has a mass of Mp=1.11+/-0.06 Mjup and radius of Rp=1.29+/-0.03 Rjup. The resulting bulk density is only rho=0.71+/-0.06 gcm-3, which is much lower than that for Jupiter. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a 30% larger radius. [less ▲]

Detailed reference viewed: 46 (12 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT LRa01 field
Carone, L.; Gandolfi, D.; Cabrera, J. et al

in Astronomy and Astrophysics (2012), 538

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose ... [more ▼]

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates. Aims: The list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation towards the Galactic anti-center is presented. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods: 7470 chromatic and 3938 monochromatic lightcurves were acquired and analysed. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results: Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73 % of all candidates) are "good" planetary candidates based on photometric analysis only. Thirty-two (i.e., 87 % of the "good" candidates) have been followed-up. At the time of this writing twenty-two cases have been solved and five planets have been discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidences of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, have been recently found. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXII. CoRoT-16b: a hot Jupiter with a hint of eccentricity around a faint solar-like star
Ollivier, M; Gillon, Michaël ULg; Santerne, A et al

in Astronomy and Astrophysics (2012), 541

<BR /> Aims: We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 ± 0.1. We discuss this value and also derive the mass and radius of the planet. <BR /> Methods: We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. <BR /> Results: CoRoT-16b is a 0.535 -0.083/+0.085 M[SUB]J[/SUB], 1.17 -0.14/+0.16 R[SUB]J[/SUB] hot Jupiter with a density of 0.44 -0.14/+0.21 g cm[SUP]-3[/SUP]. Despite its short orbital distance (0.0618 ± 0.0015 AU) and the age of the parent star (6.73 ± 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Observations made with the HARPS spectrograph at ESO La Silla Observatory (HARPS programs 083.C-0186 and 184.C-0639) and the HIRES spectrograph at the Keck Observatory (NASA-Keck programs N035Hr, N143Hr and N095Hr). [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in the CoRoT-SRc01 field
Erikson, A.; Santerne, A.; Renner, S. et al

in Astronomy and Astrophysics (2012), 539

Context. The space mission CoRoT is devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR /> Aims: We present the list of planetary transit candidates ... [more ▼]

Context. The space mission CoRoT is devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR /> Aims: We present the list of planetary transit candidates detected in the first short run observed by CoRoT that targeted SRc01, towards the Galactic center in the direction of Aquila, which lasted from April to May 2007. <BR /> Methods: Among the acquired data, we analyzed those for 1269 sources in the chromatic bands and 5705 in the monochromatic band. Instrumental noise and the stellar variability were treated with several detrending tools, to which several transit-search algorithms were subsequently applied. <BR /> Results: Fifty-one sources were classified as planetary transit candidates and 26 were followed up with ground-based observations. Until now, no planet has been detected in the CoRoT data from the SRc01 field. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. The CoRoT data are available to the community from the CoRoT archive: <A href="http://idoc-corot.ias.u-psud.fr">http://idoc-corot.ias.u-psud.fr</A>Based in part on observations made with the 1.93-m telescope at Observatoire de Haute Provence (CNRS), France (SOPHIE Program 08A.PNP.MOUT).Based in part on observations made with the ESO-3.60-m telescope at La Silla Observatory (ESO), Chile (HARPS Program ESO - 081.C-0388) and with the ESO-VLT telescope at Paranal Observatory (ESO), Chile (FLAMES Program ESO - 081.C-0413). [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission Resolving the nature of transit candidates for the LRa03 and SRa03 fields
Cavarroc, C.; Moutou, C.; Gandolfi, D. et al

in Astrophysics & Space Science (2012), 337

CoRoT is a space telescope which aims at studying internal structure of stars and detecting extrasolar planets. We present here a list of transits detected in the light curves of stars observed by CoRoT ... [more ▼]

CoRoT is a space telescope which aims at studying internal structure of stars and detecting extrasolar planets. We present here a list of transits detected in the light curves of stars observed by CoRoT in two fields in the anti-center direction: the LRa03 one observed during 148 days from 3 October 2009 to 1 March 2010 followed by the SRa03 one from the 5 March 2010 to the 29 March 2010 during 25 days. 5329 light curves for the LRa03 field and 4169 for the SRa03 field were analyzed by the detection team of CoRoT. Then some of the selected exoplanetary candidates have been followed up from the ground. In the LRa03 field, 19 exoplanet candidates have been found, 8 remain unsolved. No secured planet has been found yet. In the SRa03 field, there were 11 exoplanetary candidates among which 6 cases remain unsolved and 3 planets have been found: CoRoT-18b, CoRoT-19b, CoRoT-20b. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission - XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit
Rouan, D.; Parviainen, H.; Moutou, C. et al

in Astronomy and Astrophysics (2011), 537

We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 \pm 0.0001 days. This planet was discovered thanks to photometric data secured with the ... [more ▼]

We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 \pm 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 \pm 0.3 MJup, a radius of Rpl = 1.05 \pm 0.13 RJup, a density of \approx 3 g cm-3. RV data also clearly reveal a non zero eccentricity of e = 0.16 \pm 0.02. The planet orbits a mature G0 main sequence star of V =15.5 mag, with a mass M\star = 1.14 \pm 0.08 M\odot, a radius R\star = 1. 61 \pm 0.18 R\odot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Qp is more than a few 105, a value that is the lower bound of the usually expected range. Even if Corot-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XVI. CoRoT-14b: an unusually dense very hot Jupiter
Tingley, B.; Endl, M.; Gazzano, J*-C et al

in Astronomy and Astrophysics (2011), 528

In this paper, the CoRoT ExoplanetScience Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a ... [more ▼]

In this paper, the CoRoT ExoplanetScience Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 ± 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailExoplanet discoveries with the CoRoT space observatory
Lammer, H.; Dvorak, R.; Deleuil, M. et al

in Solar System Research (2010), 44

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space ... [more ▼]

The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 × 0.09 R [SUB]Earth[/SUB] (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 × 0.09 R [SUB]Earth[/SUB] found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10[SUP]-5[/SUP] and the very clear detection of the "super-Earth" CoRoT-7b at 3.5 × 10[SUP]-4[/SUP] relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star
Gandolfi, D.; Hébrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 524

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K ... [more ▼]

The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior. [less ▲]

Detailed reference viewed: 21 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. X. CoRoT-10b: a giant planet in a 13.24 day eccentric orbit
Bonomo, A. S.; Santerne, A.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 520

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. <BR /> Aims: We report the ... [more ▼]

Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. <BR /> Aims: We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 ± 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. <BR /> Methods: We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. <BR /> Results: We derive a radius of the planet of 0.97 ± 0.07 R[SUB]Jup[/SUB] and a mass of 2.75 ± 0.16 M[SUB]Jup[/SUB]. The bulk density, ρ[SUB]p[/SUB] = 3.70 ± 0.83 g cm[SUP]-3[/SUP], is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_⊕ of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, τ[SUB]circ[/SUB] > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 34 (0 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf
Bordé, P.; Bouchy, F.; Deleuil, M. et al

in Astronomy and Astrophysics (2010), 520

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We ... [more ▼]

<BR /> Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. <BR /> Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. <BR /> Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 R[SUB]J[/SUB], a mass of 0.22 ± 0.03 M[SUB]J[/SUB], and therefore a mean density of 1.6 ± 0.1 g cm[SUP]-3[/SUP]. <BR /> Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm[SUP]-3[/SUP]). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66</A> [less ▲]

Detailed reference viewed: 25 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XII. CoRoT-12b: a short-period low-density planet transiting a solar analog star
Gillon, Michaël ULg; Hatzes, A.; Csizmadia, Szilard et al

in Astronomy and Astrophysics (2010), 520

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ... [more ▼]

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M_* = 1.08 ± 0.08 M_ȯ, R_* = 1.1 ± 0.1 R_ȯ, T[SUB]eff[/SUB] = 5675 ± 80 K). This new planet, CoRoT-12b, has a mass of 0.92 ± 0.07 M[SUB]Jup[/SUB] and a radius of 1.44 ± 0.13 R[SUB]Jup[/SUB]. Its low density can be explained by standard models for irradiated planets. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Program), Germany and Spain. [less ▲]

Detailed reference viewed: 34 (5 ULg)
Full Text
Peer Reviewed
See detailA transiting giant planet with a temperature between 250K and 430K
Deeg, H. J.; Moutou, C.; Erikson, A. et al

in Nature (2010), 464

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their ... [more ▼]

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274days on a low eccentricity of 0.11+/-0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate' photospheric temperature estimated to be between 250 and 430K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn. [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star
Fridlund, M.; Hebrard, G.; Alonso, R. et al

in Astronomy and Astrophysics (2010), 512

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations ... [more ▼]

The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines. [less ▲]

Detailed reference viewed: 34 (2 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in Corot-IRa01 field
Carpano, S.; Cabrera, J.; Alonso, R. et al

in Astronomy and Astrophysics (2009), 506

Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR />Aims: We present the list of planetary transit ... [more ▼]

Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. <BR />Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. <BR />Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. <BR />Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoTâ space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. [less ▲]

Detailed reference viewed: 43 (5 ULg)
Full Text
Peer Reviewed
See detailPlanetary transit candidates in CoRoT-LRc01 field
Cabrera, J.; Fridlund, M.; Ollivier, M. et al

in Astronomy and Astrophysics (2009), 506

Aims: We present here the list of planetary transit candidates detected in the first long run observed by CoRoT: LRc01, towards the galactic center in the direction of Aquila, which lasted from May to ... [more ▼]

Aims: We present here the list of planetary transit candidates detected in the first long run observed by CoRoT: LRc01, towards the galactic center in the direction of Aquila, which lasted from May to October 2007. <BR />Methods: we analyzed 3719 (33%) sources in the chromatic bands and 7689 in the monochromatic band. Instrumental noise and the stellar variability were treated with several detrending tools, on which subsequently several transit search algorithms were applied. <BR />Results: Forty two sources were classified as planetary transit candidates and up to now 26 cases have been solved. One planet (CoRoT-2b) and one brown-dwarf (CoRoT-3b) have been the subjects of detailed publications. The CoRoT space mission, launched on December 27 2006, was developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany and Spain. The first CoRoT data are available to the community from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. [less ▲]

Detailed reference viewed: 36 (3 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. VII. The ``hot-Jupiter''-type planet CoRoT-5b
Rauer, H.; Queloz, D.; Csizmadia, Szilard et al

in Astronomy and Astrophysics (2009), 506

Aims: The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep ... [more ▼]

Aims: The CoRoT space mission continues to photometrically monitor about 12 000 stars in its field-of-view for a series of target fields to search for transiting extrasolar planets ever since 2007. Deep transit signals can be detected quickly in the â alarm-modeâ in parallel to the ongoing target field monitoring. CoRoT's first planets have been detected in this mode. <BR />Methods: The CoRoT raw lightcurves are filtered for orbital residuals, outliers, and low-frequency stellar signals. The phase folded lightcurve is used to fit the transit signal and derive the main planetary parameters. Radial velocity follow-up observations were initiated to secure the detection and to derive the planet mass. <BR />Results: We report the detection of CoRoT-5b, detected during observations of the LRa01 field, the first long-duration field in the galactic anti-center direction. CoRoT-5b is a â hot Jupiter-typeâ planet with a radius of 1.388[SUP]+0.046[/SUP][SUB]-0.047[/SUB] R_Jup, a mass of 0.467[SUP]+0.047[/SUP][SUB]-0.024[/SUB] M_Jup, and therefore, a mean density of 0.217[SUP]+0.031[/SUP][SUB]-0.025[/SUB] g cm[SUP]-3[/SUP]. The planet orbits an F9V star of 14.0 mag in 4.0378962 ± 0.0000019 days at an orbital distance of 0.04947[SUP]+0.00026[/SUP][SUB]-0.00029[/SUB] AU. Observations made with SOPHIE spectrograph at the Observatoire de Haute Provence (07B.PNP.MOUT), France, and HARPS spectrograph at ESO La Silla Observatory (072.C-0488(E), 082.C-0312(A)), and partly based on observations made at the Anglo-Australian Telescope. The CoRoT space mission, launched on December 27, 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain. [less ▲]

Detailed reference viewed: 25 (1 ULg)
Full Text
Peer Reviewed
See detailRate and nature of false positives in the CoRoT exoplanet search
Almenara, J. M.; Deeg, H. J.; Aigrain, S. et al

in Astronomy and Astrophysics (2009), 506

Context: The CoRoT satellite searches for planets by applying the transit method, monitoring up to 12 000 stars in the galactic plane for 150 days in each observing run. This search is contaminated by a ... [more ▼]

Context: The CoRoT satellite searches for planets by applying the transit method, monitoring up to 12 000 stars in the galactic plane for 150 days in each observing run. This search is contaminated by a large fraction of false positives, caused by different eclipsing binary configurations that might be confused with a transiting planet. <BR />Aims: We evaluate the rates and nature of false positives in the CoRoT exoplanets search and compare our results with semiempirical predictions. <BR />Methods: We consider the detected binary and planet candidates in the first three extended CoRoT runs, and classify the results of the follow-up observations completed to verify their planetary nature. We group the follow-up results into undiluted binaries, diluted binaries, and planets and compare their abundances with predictions from the literature. <BR />Results: 83% of the initial detections are classified as false positives using only the CoRoT light-curves, the remaining 17% require follow-up observations. Finally, 12% of the candidates in the follow-up program are planets. The shape of the overall distribution of the false positive rate follows previous predictions, except for candidates with transit depths below about 0.4%. For candidates with transit depths in the range from 0.1-0.4%, CoRoT detections are nearly complete, and this difference from predictions is probably real and dominated by a lower than expected abundance of diluted eclipsing binaries. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil , ESA (RSSD and Science Programme), Germany and Spain. [less ▲]

Detailed reference viewed: 25 (2 ULg)