References of "Ségransan, Damien"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit
von Boetticher, Alexander; Triaud, Amaury H. M. J.; Queloz, Didier et al

in Astronomy and Astrophysics (2017), 604

We report the discovery of an eclipsing binary system with mass-ratio q ˜ 0.07. After identifying a periodic photometric signal received by WASP, we obtained CORALIE spectroscopic radial velocities and ... [more ▼]

We report the discovery of an eclipsing binary system with mass-ratio q ˜ 0.07. After identifying a periodic photometric signal received by WASP, we obtained CORALIE spectroscopic radial velocities and follow-up light curves with the Euler and TRAPPIST telescopes. From a joint fit of these data we determine that EBLM J0555-57 consists of a sun-like primary star that is eclipsed by a low-mass companion, on a weakly eccentric 7.8-day orbit. Using a mass estimate for the primary star derived from stellar models, we determine a companion mass of 85 ± 4 M[SUB]Jup[/SUB] (0.081 M[SUB]⊙[/SUB]) and a radius of 0.84[SUP]+ 0.14[/SUP][SUB]-0.04[/SUB]R[SUB]Jup[/SUB] (0.084 R[SUB]⊙[/SUB]) that is comparable to that of Saturn. EBLM J0555-57Ab has a surface gravity log g[SUB]2[/SUB] =5.50[SUP]+ 0.03[/SUP][SUB]-0.13[/SUB] and is one of the densest non-stellar-remnant objects currently known. These measurements are consistent with models of low-mass stars. The photometry tables and radial velocities are only available at the CDS and on demand via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/L6">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/L6</A> [less ▲]

Detailed reference viewed: 18 (2 ULiège)
Full Text
Peer Reviewed
See detailPeculiar architectures for the WASP-53 and WASP-81 planet-hosting systems★
Triaud, Amaury H. M. J.; Neveu-VanMalle, Marion; Lendl, Monika et al

in Monthly Notices of the Royal Astronomical Society (2017), 467

We report the detection of two new systems containing transiting planets. Both were identified by WASP as worthy transiting planet candidates. Radial velocity observations quickly verified that the ... [more ▼]

We report the detection of two new systems containing transiting planets. Both were identified by WASP as worthy transiting planet candidates. Radial velocity observations quickly verified that the photometric signals were indeed produced by two transiting hot Jupiters. Our observations also show the presence of additional Doppler signals. In addition to short-period hot Jupiters, we find that the WASP-53 and WASP-81 systems also host brown dwarfs, on fairly eccentric orbits with semimajor axes of a few astronomical units. WASP-53c is over 16 M[SUB]Jup[/SUB]sin i[SUB]c[/SUB] and WASP-81c is 57 M[SUB]Jup[/SUB]sin i[SUB]c[/SUB]. The presence of these tight, massive companions restricts theories of how the inner planets were assembled. We propose two alternative interpretations: the formation of the hot Jupiters within the snow line or the late dynamical arrival of the brown dwarfs after disc dispersal. We also attempted to measure the Rossiter-McLaughlin effect for both hot Jupiters. In the case of WASP-81b, we fail to detect a signal. For WASP-53b, we find that the planet is aligned with respect to the stellar spin axis. In addition we explore the prospect of transit-timing variations, and of using Gaia's astrometry to measure the true masses of both brown dwarfs and also their relative inclination with respect to the inner transiting hot Jupiters. [less ▲]

Detailed reference viewed: 15 (1 ULiège)
Full Text
Peer Reviewed
See detailTwo massive rocky planets transiting a K-dwarf 6.5 parsecs away
Gillon, Michaël ULiege; Demory, Brice-Olivier; Van Grootel, Valérie ULiege et al

in Nature Astronomy (2017), 1

HD 219134 is a K-dwarf star at a distance of 6.5 parsecs around which several low-mass planets were recently discovered[SUP]1,2[/SUP]. The Spitzer Space Telescope detected a transit of the innermost of ... [more ▼]

HD 219134 is a K-dwarf star at a distance of 6.5 parsecs around which several low-mass planets were recently discovered[SUP]1,2[/SUP]. The Spitzer Space Telescope detected a transit of the innermost of these planets, HD 219134 b, whose mass and radius (4.5 M[SUB]⊕[/SUB] and 1.6 R[SUB]⊕[/SUB] respectively) are consistent with a rocky composition[SUP]1[/SUP]. Here, we report new high-precision time-series photometry of the star acquired with Spitzer revealing that the second innermost planet of the system, HD 219134c, is also transiting. A global analysis of the Spitzer transit light curves and the most up-to-date HARPS-N velocity data set yields mass and radius estimations of 4.74 ± 0.19 M[SUB]⊕[/SUB] and 1.602 ± 0.055 R[SUB]⊕[/SUB] for HD 219134 b, and of 4.36 ± 0.22 M[SUB]⊕[/SUB] and 1.511 ± 0.047 R[SUB]⊕[/SUB] for HD 219134 c. These values suggest rocky compositions for both planets. Thanks to the proximity and the small size of their host star (0.778 ± 0.005 R[SUB]⊙[/SUB])[SUP]3[/SUP], these two transiting exoplanets — the nearest to the Earth yet found — are well suited for a detailed characterization (for example, precision of a few per cent on mass and radius, and constraints on the atmospheric properties) that could give important constraints on the nature and formation mechanism of the ubiquitous short-period planets of a few Earth masses. [less ▲]

Detailed reference viewed: 51 (7 ULiège)
Full Text
Peer Reviewed
See detailHubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri B b
Demory, Brice-Olivier; Ehrenreich, David; Queloz, Didier et al

in Monthly Notices of the Royal Astronomical Society (2015), 450

Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a ... [more ▼]

Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterization of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet α Centauri B b with the Hubble Space Telescope (HST). We observed α Centauri B twice in 2013 and 2014 for a total of 40 h. We achieve a precision of 115 ppm per 6-s exposure time in a highly saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of α Centauri B b with the orbital parameters published in the literature at 96.6 per cent confidence. We find in our data a single transit-like event that could be associated with another Earth-sized planet in the system, on a longer period orbit. Our programme demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 h of continuous observations. [less ▲]

Detailed reference viewed: 16 (0 ULiège)
Full Text
Peer Reviewed
See detailRossiter-McLaughlin Observations of 55 Cnc e
Lopez-Morales, Mercedes; Triaud, Amaury H. M. J.; Rodler, Florian et al

in Astrophysical Journal Letters (2014), sous presse

We present Rossiter-McLaughlin observations of the transiting super-Earth 55 Cnc e collected during six transit events between January 2012 and November 2013 with HARPS and HARPS-N. We detect no radial ... [more ▼]

We present Rossiter-McLaughlin observations of the transiting super-Earth 55 Cnc e collected during six transit events between January 2012 and November 2013 with HARPS and HARPS-N. We detect no radial-velocity signal above 35 cm/s (3-sigma) and confine the stellar v sin i to 0.2 +/- 0.5 km/s. The star appears to be a very slow rotator, producing a very low amplitude Rossiter-McLaughlin effect. Given such a low amplitude, the Rossiter-McLaughlin effect of 55 Cnc e is undetected in our data, and any spin-orbit angle of the system remains possible. We also performed Doppler tomography and reach a similar conclusion. Our results offer a glimpse of the capacity of future instrumentation to study low amplitude Rossiter-McLaughlin effects produced by super-Earths. [less ▲]

Detailed reference viewed: 47 (1 ULiège)
Full Text
See detailHD 97658 and its super-Earth: Spitzer transit analysis and seismic modeling of the host star
Van Grootel, Valérie ULiege; Gillon, Michaël ULiege; Valencia, Diana et al

Conference (2013, December)

Detailed reference viewed: 17 (0 ULiège)
Full Text
Peer Reviewed
See detailThe EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit
Triaud, Amaury H. M. J.; Hebb, Leslie; Anderson, David R. et al

in Astronomy and Astrophysics (2013), 549

This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects ... [more ▼]

This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial planes. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass--radius relationship, whereas WASP-30b lies above it. [less ▲]

Detailed reference viewed: 28 (3 ULiège)
Full Text
Peer Reviewed
See detailImproved precision on the radius of the nearby super-Earth 55 Cnc e
Gillon, Michaël ULiege; Demory, B.-O.; Benneke, B. et al

in Astronomy and Astrophysics (2012), 539

We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 microns. An individual analysis of these new data leads to a planet radius of 2.21-0.16+0.15 Rearth ... [more ▼]

We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 microns. An individual analysis of these new data leads to a planet radius of 2.21-0.16+0.15 Rearth, in good agreement with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the planet at 4.5 microns to 2.20+-0.12 Rearth. We also performed an independent analysis of the MOST data, paying particular attention to the influence of the systematic effects of instrumental origin on the derived parameters and errors by including them in a global model instead of performing a preliminary detrending-filtering processing. We deduce from this reanalysis of MOST data an optical planet radius of 2.04+-0.15 Rearth that is consistent with our Spitzer infrared radius. Assuming the achromaticity of the transit depth, we performed a global analysis combining Spitzer and MOST data that results in a planet radius of 2.17+-0.10 Rearth (13,820+-620 km). These results confirm that the most probable composition of 55 Cnc e is an envelope of supercritical water above a rocky nucleus. [less ▲]

Detailed reference viewed: 231 (6 ULiège)
Full Text
Peer Reviewed
See detailHigh precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
Malbet, Fabien; Léger, Alain; Shao, Michael et al

in Experimental Astronomy (2012), 34(2), 385-413

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within ... [more ▼]

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT—the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 μas (1 σ) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun. [less ▲]

Detailed reference viewed: 113 (21 ULiège)