References of "Ségransan, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. IV. Gravitational instability rarely forms wide, giant planets
Vigan, A.; Bonavita, M.; Biller, B. et al

in Astronomy and Astrophysics (2017), 603

Understanding the formation and evolution of giant planets (≥1 M[SUB]Jup[/SUB]) at wide orbital separation (≥5 AU) is one of the goals of direct imaging. Over the past 15 yr, many surveys have placed ... [more ▼]

Understanding the formation and evolution of giant planets (≥1 M[SUB]Jup[/SUB]) at wide orbital separation (≥5 AU) is one of the goals of direct imaging. Over the past 15 yr, many surveys have placed strong constraints on the occurrence rate of wide-orbit giants, mostly based on non-detections, but very few have tried to make a direct link with planet formation theories. In the present work, we combine the results of our previously published VLT/NaCo large program with the results of 12 past imaging surveys to constitute a statistical sample of 199 FGK stars within 100 pc, including three stars with sub-stellar companions. Using Monte Carlo simulations and assuming linear flat distributions for the mass and semi-major axis of planets, we estimate the sub-stellar companion frequency to be within 0.75-5.70% at the 68% confidence level (CL) within 20-300 AU and 0.5-75 M[SUB]Jup[/SUB], which is compatible with previously published results. We also compare our results with the predictions of state-of-the-art population synthesis models based on the gravitational instability (GI) formation scenario with and without scattering. We estimate that in both the scattered and non-scattered populations, we would be able to detect more than 30% of companions in the 1-75 M[SUB]Jup[/SUB] range (95% CL). With the threesub-stellar detections in our sample, we estimate the fraction of stars that host a planetary system formed by GI to be within 1.0-8.6% (95% CL). We also conclude that even though GI is not common, it predicts a mass distribution of wide-orbit massive companions that is much closer to what is observed than what the core accretion scenario predicts. Finally, we associate the present paper with the release of the Direct Imaging Virtual Archive (DIVA), a public database that aims at gathering the results of past, present, and future direct imaging surveys. Based on observations collected at the European Southern Observatory, Chile (ESO Large Program 184.C-0157 and Open Time 089.C-0137A and 090.C-0252A). [less ▲]

Detailed reference viewed: 32 (3 ULg)
Full Text
See detailThe HARPS search for southern extra-solar planets. XXXVI. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions
Udry, S.; Dumusque, X.; Lovis, C. et al

in ArXiv e-prints (2017), 1705

We present radial-velocity measurement of eight stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). Data span more than ten years and highlight the ... [more ▼]

We present radial-velocity measurement of eight stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). Data span more than ten years and highlight the long-term stability of the instrument. We search for potential planets orbiting HD20003, HD20781, HD21693, HD31527, HD45184, HD51608, HD134060 and HD136352 to increase the number of known planetary systems and thus better constrain exoplanet statistics. After a preliminary phase looking for signals using generalized Lomb-Scargle periodograms, we perform a careful analysis of all signals to separate \emph{bona-fide} planets from spurious signals induced by stellar activity and instrumental systematics. We finally secure the detection of all planets using the efficient MCMC available on the Data and Analysis Center for Exoplanets (DACE web-platform), using model comparison whenever necessary. In total, we report the detection of twenty new super-Earth to Neptune-mass planets, with minimum masses ranging from 2 to 30 M$_{\rm Earth}$, and periods ranging from 3 to 1300 days. By including CORALIE and HARPS measurements of HD20782 to the already published data, we also improve the characterization of the extremely eccentric Jupiter orbiting this host. [less ▲]

Detailed reference viewed: 15 (0 ULg)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects
Gaia Collaboration; van Leeuwen, F.; Vallenari, A. et al

in Astronomy and Astrophysics (2017), 601

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and ... [more ▼]

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. <BR /> Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. <BR /> Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. <BR /> Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. <BR /> Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs. Tables D.1 to D.19 are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19</A> [less ▲]

Detailed reference viewed: 34 (4 ULg)
Full Text
Peer Reviewed
See detailThe Spitzer search for the transits of HARPS low-mass planets. II. Null results for 19 planets
Gillon, Michaël ULg; Demory, B.-O.; Lovis, C. et al

in Astronomy and Astrophysics (2017), 601

Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of ... [more ▼]

Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. In this context, we initiated in 2010 an ambitious Spitzer multi-Cycle transit search project that targeted 25 low-mass planets detected by radial velocity, focusing mainly on the shortest-period planets detected by the HARPS spectrograph. We report here null results for 19 targets of the project. For 16 planets out of 19, a transiting configuration is strongly disfavored or firmly rejected by our data for most planetary compositions. We derive a posterior probability of 83% that none of the probed 19 planets transits (for a prior probability of 22%), which still leaves a significant probability of 17% that at least one of them does transit. Globally, our Spitzer project revealed or confirmed transits for three of its 25 targeted planets, and discarded or disfavored the transiting nature of 20 of them. Our light curves demonstrate for Warm Spitzer excellent photometric precisions: for 14 targets out of 19, we were able to reach standard deviations that were better than 50 ppm per 30 min intervals. Combined with its Earth-trailing orbit, which makes it capable of pointing any star in the sky and to monitor it continuously for days, this work confirms Spitzer as an optimal instrument to detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler surveys. The photometric and radial velocity time series used in this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A117</A> [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-167b/KELT-13b: Joint discovery of a hot Jupiter transiting a rapidly-rotating F1V star
Temple, L. Y.; Hellier, C.; Albrow, M. D. et al

in Monthly Notices of the Royal Astronomical Society (2017), 471(3), 2743-2752

We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a $V$ = 10.5, F1V star with [Fe/H] = 0.1 $\pm$ 0.1. The 1.5 R$_{\rm Jup}$ planet was ... [more ▼]

We report the joint WASP/KELT discovery of WASP-167b/KELT-13b, a transiting hot Jupiter with a 2.02-d orbit around a $V$ = 10.5, F1V star with [Fe/H] = 0.1 $\pm$ 0.1. The 1.5 R$_{\rm Jup}$ planet was confirmed by Doppler tomography of the stellar line profiles during transit. We place a limit of $<$ 8 M$_{\rm Jup}$ on its mass. The planet is in a retrograde orbit with a sky-projected spin-orbit angle of $\lambda = -165^{\circ} \pm 5^{\circ}$. This is in agreement with the known tendency for orbits around hotter stars to be more likely to be misaligned. WASP-167/KELT-13 is one of the few systems where the stellar rotation period is less than the planetary orbital period. We find evidence of non-radial stellar pulsations in the host star, making it a $\delta$-Scuti or $\gamma$-Dor variable. The similarity to WASP-33, a previously known hot-Jupiter host with pulsations, adds to the suggestion that close-in planets might be able to excite stellar pulsations. [less ▲]

Detailed reference viewed: 10 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b & WASP-142b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2017), 465

We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with ... [more ▼]

We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with [Fe/H] = +0.26. Warm Jupiters tend to have smaller radii than hot Jupiters, and WASP-130b is in line with this trend (1.23 Mjup; 0.89 Rjup). WASP-131b is a bloated Saturn-mass planet (0.27 Mjup; 1.22 Rjup). Its large scale height coupled with the V = 10.1 brightness of its host star make the planet a good target for atmospheric characterisation. WASP-132b is among the least irradiated and coolest of WASP planets, being in a 7.1-d orbit around a K4 star. It has a low mass and a modest radius (0.41 Mjup; 0.87 Rjup). The V = 12.4, [Fe/H] = +0.22 star shows a possible rotational modulation at 33 d. WASP-139b is the lowest-mass planet yet found by WASP, at 0.12 Mjup and 0.80 Rjup. It is a "super-Neptune" akin to HATS-7b and HATS-8b. It orbits a V = 12.4, [Fe/H] = +0.20, K0 star. The star appears to be anomalously dense, akin to HAT-P-11. WASP-140b is a 2.4-Mjup planet in a 2.2-d orbit that is both eccentric (e = 0.047) and with a grazing transit (b = 0.93) The timescale for tidal circularisation is likely to be the lowest of all known eccentric hot Jupiters. The planet's radius is large (1.4 Rjup), but uncertain owing to the grazing transit. The host star is a V = 11.1, [Fe/H] = +0.12, K0 dwarf showing a prominent 10.4-d rotational modulation. The dynamics of this system are worthy of further investigation. WASP-141b is a typical hot Jupiter, being a 2.7 Mjup, 1.2 Rjup planet in a 3.3-d orbit around a V = 12.4, [Fe/H] = +0.29, F9 star. WASP-142b is a typical bloated hot Jupiter (0.84 Mjup, 1.53 Rjup) in a 2.1-d orbit around a V = 12.3, [Fe/H] = +0.26, F8 star. [less ▲]

Detailed reference viewed: 135 (6 ULg)
Full Text
Peer Reviewed
See detailWASP-92b, WASP-93b and WASP-118b: Three new transiting close-in giant planets
Hay, K. L.; Collier-Cameron, A.; Doyle, A. P. et al

in Monthly Notices of the Royal Astronomical Society (2016), 463

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric ... [more ▼]

We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric lightcurves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 days, which has R[SUB]p[/SUB] = 1.461 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.805 ± 0.068M[SUB]J[/SUB]. WASP-93b orbits its F4 host star every 2.73 days and has R[SUB]p[/SUB] = 1.597 ± 0.077R[SUB]J[/SUB] and M[SUB]p[/SUB] = 1.47 ± 0.029M[SUB]J[/SUB]. WASP-118b also has a hot host star (F6) and is moderately inflated, where R[SUB]p[/SUB] = 1.440 ± 0.036R[SUB]J[/SUB] and M[SUB]p[/SUB] = 0.514 ± 0.020M[SUB]J[/SUB] and the planet has an orbital period of 4.05 days. They are bright targets (V = 13.18, 10.97 and 11.07 respectively) ideal for further characterisation work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin-orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered. [less ▲]

Detailed reference viewed: 42 (6 ULg)
Full Text
Peer Reviewed
See detailWASP-157b, a Transiting Hot Jupiter Observed with K2
Močnik, T.; Anderson, D. R.; Brown, D. J. A. et al

in Publications of the Astronomical Society of the Pacific (2016), 970

We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of $0.57 ... [more ▼]

We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of $0.57 \pm 0.10$ M$_{\rm Jup}$ and a radius of $1.06 \pm 0.05$ R$_{\rm Jup}$. We do not detect any rotational or phase-curve modulations, nor the secondary eclipse, with conservative semi-amplitude upper limits of 250 and 20 ppm, respectively. [less ▲]

Detailed reference viewed: 44 (2 ULg)
Full Text
Peer Reviewed
See detailGaia Data Release 1. Summary of the astrometric, photometric, and survey properties
Gaia Collaboration; Brown, A. G. A.; Vallenari, A. et al

in Astronomy and Astrophysics (2016), 595

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR ... [more ▼]

Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. <BR /> Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. <BR /> Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. <BR /> Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr[SUP]-1[/SUP] for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr[SUP]-1[/SUP]. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR /> Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. [less ▲]

Detailed reference viewed: 31 (4 ULg)
Full Text
Peer Reviewed
See detailThe Gaia mission
Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J. et al

in Astronomy and Astrophysics (2016), 595

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept ... [more ▼]

Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. <A href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A> [less ▲]

Detailed reference viewed: 55 (7 ULg)
Full Text
Peer Reviewed
See detailWASP-113b and WASP-114b, two inflated hot-Jupiters with contrasting densities
Barros, S. C. C.; Brown, D. J. A.; Hébrard, G. et al

in Astronomy and Astrophysics (2016), 593

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by ... [more ▼]

We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, {\it SOPHIE} and {\it CORALIE}. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of $\sim 5900\,$K, [Fe/H]$\sim 0.12$ and $T_{\rm eff}$ $\sim 4.1$dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of $0.48\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 4.5\,$days; WASP-114b has a mass of $1.77\,$ $\mathrm{M}_{\rm Jup}$ and an orbital period of $\sim 1.5\,$days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of $\Re=0.35$. The high scale height of WASP-113b ($\sim 950$ km ) makes it a good target for follow-up atmospheric observations. [less ▲]

Detailed reference viewed: 27 (2 ULg)
Full Text
See detailWASP-86b and WASP-102b: super-dense versus bloated planets
Faedi, F.; Gómez Maqueo Chew, Y.; Pollacco, D. et al

E-print/Working paper (2016)

We report the discovery of two transiting planetary systems: a super dense, sub-Jupiter mass planet WASP-86b (\mpl\ = 0.82 $\pm$ 0.06 \mj, \rpl\ = 0.63 $\pm$ 0.01 \rj), and a bloated, Saturn-like planet ... [more ▼]

We report the discovery of two transiting planetary systems: a super dense, sub-Jupiter mass planet WASP-86b (\mpl\ = 0.82 $\pm$ 0.06 \mj, \rpl\ = 0.63 $\pm$ 0.01 \rj), and a bloated, Saturn-like planet WASP-102b (\mpl\ = 0.62 $\pm$ 0.04 \mj, \rpl\=1.27 $\pm$ 0.03 \rj). They orbit their host star every $\sim$5.03, and $\sim$2.71 days, respectively. The planet hosting WASP-86 is a F7 star (\teff\ = 6330$\pm$110 K, \feh\ = $+$0.23 $\pm$ 0.14 dex, and age $\sim$0.8--1~Gyr), WASP-102 is a G0 star (\teff\ = 5940$\pm$140 K, \feh\ = $-$0.09$\pm$ 0.19 dex, and age $\sim$1~Gyr). These two systems highlight the diversity of planetary radii over similar masses for giant planets with masses between Saturn and Jupiter. WASP-102b shows a larger than model-predicted radius, indicating that the planet is receiving a strong incident flux which contributes to the inflation of its radius. On the other hand, with a density of $\rho_{pl}$ = 3.24$\pm$~0.3~$\rho_{jup}$, WASP-86b is the densest gas giant planet among planets with masses in the range 0.05 $<M$_{pl}$<$ 2.0 \mj. With a stellar mass of 1.34 M$_{\odot}$ and \feh = $+$0.23 dex, WASP-86 could host additional massive and dense planets given that its protoplanetary disc is expected to also have been enriched with heavy elements. In order to match WASP-86b's density, an extrapolation of theoretical models predicts a planet composition of more than 80\% in heavy elements (whether confined in a core or mixed in the envelope). This fraction corresponds to a core mass of approximately 210\me\ for WASP-86b's mass of \mpl$\sim$260\,\me. Only planets with masses larger than about 2\mj\ have larger densities than that of WASP-86b, making it exceptional in its mass range. [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailFrom Dense Hot Jupiter to Low Density Neptune: The Discovery of WASP-127b, WASP-136b and WASP-138b
Lam, K. W. F.; Faedi, F.; Brown, D. J. A. et al

in Astronomy and Astrophysics (2016), 599

We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered ... [more ▼]

We report three newly discovered exoplanets from the SuperWASP survey. WASP-127b is a heavily inflated super-Neptune of mass 0.18Mj and radius 1.35Rj. This is one of the least massive planets discovered by the WASP project. It orbits a bright host star (V = 10.16) of spectral type G5 with a period of 4.17 days.WASP-127b is a low density planet which has an extended atmosphere with a scale height of 2500+/-400 km, making it an ideal candidate for transmission spectroscopy. WASP-136b and WASP-138b are both hot Jupiters with mass and radii of 1.51 Mj and 1.38 Rj, and 1.22 Mj and 1.09 Rj, respectively. WASP-136b is in a 5.22-day orbit around an F9 subgiant star with a mass of 1.41 Msun and a radius of 2.21 Rsun. The discovery of WASP-136b could help constraint the characteristics of the giant planet population around evolved stars. WASP-138b orbits an F7 star with a period of 3.63 days. Its radius agrees with theoretical values from standard models, suggesting the presence of a heavy element core with a mass of 10 Mearth. The discovery of these new planets helps in exploring the diverse compositional range of short-period planets, and will aid our understanding of the physical characteristics of both gas giants and low density planets. [less ▲]

Detailed reference viewed: 36 (5 ULg)
Full Text
Peer Reviewed
See detailWASP-120b, WASP-122b and WASP-123b: Three newly discovered planets from the WASP-South survey
Turner, O. D.; Anderson, D. R.; Collier Cameron, A. et al

in Publications of the Astronomical Society of the Pacific (2016), 128

We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be ... [more ▼]

We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be eccentric (e = 0.059+0.025-0.018) around an F5 star. WASP-122b is a hot-Jupiter (1.37MJup, 1.79RJup) in a 1.7-day orbit about a G4 star. Our predicted transit depth variation cause by the atmosphere of WASP-122b suggests it is well suited to characterisation. WASP-123b is a hot-Jupiter (0.92MJup, 1.33RJup) in a 3.0-day orbit around an old (~ 7 Gyr) G5 star. [less ▲]

Detailed reference viewed: 32 (0 ULg)
Full Text
Peer Reviewed
See detailFive transiting hot Jupiters discovered using WASP-South, Euler, and TRAPPIST: WASP-119 b, WASP-124 b, WASP-126 b, WASP-129 b, and WASP-133 b
Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A. et al

in Astronomy and Astrophysics (2016), 591

We have used photometry from the WASP-South instrument to identify 5 stars showing planet-like transits in their light curves. The planetary nature of the companions to these stars has been confirmed ... [more ▼]

We have used photometry from the WASP-South instrument to identify 5 stars showing planet-like transits in their light curves. The planetary nature of the companions to these stars has been confirmed using photometry from the EulerCam instrument on the Swiss Euler 1.2-m telescope and the TRAPPIST telescope, and spectroscopy obtained with the CORALIE spectrograph. The planets discovered are hot Jupiter systems with orbital periods in the range 2.17 to 5.75 days, masses from 0.3 M[SUB]Jup[/SUB] to 1.2 M[SUB]Jup[/SUB] and with radii from 1 R[SUB]Jup[/SUB] to 1.5 R[SUB]Jup[/SUB]. These planets orbit bright stars (V = 11-13) with spectral types in the range F9 to G4. WASP-126 is the brightest planetary system in this sample and hosts a low-mass planet with a large radius (0.3 M[SUB]Jup[/SUB],0.95 R[SUB]Jup[/SUB]), making it a good target for transmission spectroscopy. The high density of WASP-129 A suggests that it is a helium-rich star similar to HAT-P-11 A. WASP-133 A has an enhanced surface lithium abundance compared to other old G-type stars, particularly other planet host stars. These planetary systems are good targets for follow-up observations with ground-based and space-based facilities to study their atmospheric and dynamical properties. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A55">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A55</A> [less ▲]

Detailed reference viewed: 21 (1 ULg)
Full Text
Peer Reviewed
See detailWASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star
Delrez, Laetitia ULg; Santerne, A.; Almenara, J.-M. et al

in Monthly Notices of the Royal Astronomical Society (2016), 458(4), 4025-4043

We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup ... [more ▼]

We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255_{-0.000 0025}^{+0.000 0020} days an active F6-type main-sequence star (V = 10.4, 1.353_{-0.079}^{+0.080} M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ˜1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (˜7.1 109 erg s-1 cm-2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ˜4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8°_{-5.5°}^{+5.3°}. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body. [less ▲]

Detailed reference viewed: 48 (2 ULg)
Full Text
Peer Reviewed
See detailThe Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations
Haywood, R. D.; Collier Cameron, A.; Unruh, Y. C. et al

in Monthly Notices of the Royal Astronomical Society (2016), 457

The Sun is the only star whose surface can be directly resolved at high resolution, and therefore constitutes an excellent test case to explore the physical origin of stellar radial-velocity (RV ... [more ▼]

The Sun is the only star whose surface can be directly resolved at high resolution, and therefore constitutes an excellent test case to explore the physical origin of stellar radial-velocity (RV) variability. We present HARPS observations of sunlight scattered off the bright asteroid 4/Vesta, from which we deduced the Sun's activity-driven RV variations. In parallel, the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory provided us with simultaneous high spatial resolution magnetograms, Dopplergrams and continuum images of the Sun in the Fe I 6173 Å line. We determine the RV modulation arising from the suppression of granular blueshift in magnetized regions and the flux imbalance induced by dark spots and bright faculae. The rms velocity amplitudes of these contributions are 2.40 and 0.41 m s[SUP]-1[/SUP], respectively, which confirms that the inhibition of convection is the dominant source of activity-induced RV variations at play, in accordance with previous studies. We find the Doppler imbalances of spot and plage regions to be only weakly anticorrelated. Light curves can thus only give incomplete predictions of convective blueshift suppression. We must instead seek proxies that track the plage coverage on the visible stellar hemisphere directly. The chromospheric flux index R^' }_{HK} derived from the HARPS spectra performs poorly in this respect, possibly because of the differences in limb brightening/darkening in the chromosphere and photosphere. We also find that the activity-driven RV variations of the Sun are strongly correlated with its full-disc magnetic flux density, which may become a useful proxy for activity-related RV noise. [less ▲]

Detailed reference viewed: 22 (2 ULg)
Full Text
Peer Reviewed
See detailThe VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits . III. The frequency of brown dwarfs and giant planets as companions to solar-type stars
Reggiani, Maddalena ULg; Meyer, M. R.; Chauvin, G. et al

in Astronomy and Astrophysics (2016), 586

Context. In recent years there have been many attempts to characterize the occurrence and distribution of stellar, brown dwarf (BD), and planetary-mass companions to solar-type stars with the aim of ... [more ▼]

Context. In recent years there have been many attempts to characterize the occurrence and distribution of stellar, brown dwarf (BD), and planetary-mass companions to solar-type stars with the aim of constraining formation mechanisms. From radial velocity observations a dearth of companions with masses between 10-40 M[SUB]Jupiter[/SUB] has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. <BR /> Aims: We present a model for the substellar companion mass function (CMF). This model consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the radial velocity measured CMF for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program (NaCo-LP) and the complementary archive datasets, which probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. <BR /> Methods: We developed a Monte Carlo simulation tool to predict the outcome of a given survey, depending on the shape of the orbital parameter distributions (mass, semimajor axis, eccentricity, and inclination). Comparing the predictions with the results of the observations, we calculate the likelihood of different models and which models can be ruled out. <BR /> Results: Current observations are consistent with the proposed model for the CMF, as long as a sufficiently small outer truncation radius (≲100 AU) is introduced for the planet separation distribution. Some regions of parameter space can be excluded by the observations. <BR /> Conclusions: We conclude that the results of the direct imaging surveys searching for substellar companions around Sun-like stars are consistent with a combined substellar mass spectrum of planets and BDs. This mass distribution has a minimum between 10 and 50 M[SUB]Jupiter[/SUB], in agreement with radial velocity measurements. In this picture the dearth of objects in this mass range would naturally arise from the shape of the mass distribution, without the introduction of any distinct formation mechanism for BDs. This kind of model for the CMF allows us to determine the probability for a substellar companion as a function of mass to have formed in a disk or from protostellar core fragmentation, as such mechanisms overlap in this mass range. Based on observations collected at the European Southern Observatory, Chile (ESO Large Program 184.C-0157 and Open Time 089.C-0137A and 090.C-0252A). [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailHot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47
Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R. et al

in Astronomy and Astrophysics (2016), 586

We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\pm$ 0.20 M$_{\rm Jup}$ and eccentricity 0.29 $\pm$ 0.02, and it orbits ... [more ▼]

We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\pm$ 0.20 M$_{\rm Jup}$ and eccentricity 0.29 $\pm$ 0.02, and it orbits in 421 $\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\pm$ 0.22 M$_{\rm Jup}$ and eccentricity 0.13 $\pm$ 0.10, and it orbits in 572 $\pm$ 7 days. Unlike most of the planetary systems that include a hot Jupiter, these two systems with a hot Jupiter have a long-period planet located at only $\sim$1 au from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect induced by the second planet, we used the emission in the H$\alpha$ line and find this indicator well suited to detecting the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for understanding planetary migration. [less ▲]

Detailed reference viewed: 68 (4 ULg)
Full Text
Peer Reviewed
See detailThe HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles
Díaz, R. F.; Ségransan, D.; Udry, S. et al

in Astronomy and Astrophysics (2016), 585

We present the analysis of the entire HARPS observations of three stars that host planetary systems: HD1461, HD40307, and HD204313. The data set spans eight years and contains more than 200 nightly ... [more ▼]

We present the analysis of the entire HARPS observations of three stars that host planetary systems: HD1461, HD40307, and HD204313. The data set spans eight years and contains more than 200 nightly averaged velocity measurements for each star. This means that it is sensitive to both long-period and low-mass planets and also to the effects induced by stellar activity cycles. We modelled the data using Keplerian functions that correspond to planetary candidates and included the short- and long-term effects of magnetic activity. A Bayesian approach was taken both for the data modelling, which allowed us to include information from activity proxies such as $\log{(R'_{\rm HK})}$ in the velocity modelling, and for the model selection, which permitted determining the number of significant signals in the system. The Bayesian model comparison overcomes the limitations inherent to the traditional periodogram analysis. We report an additional super-Earth planet in the HD1461 system. Four out of the six planets previously reported for HD40307 are confirmed and characterised. We discuss the remaining two proposed signals. In particular, we show that when the systematic uncertainty associated with the techniques for estimating model probabilities are taken into account, the current data are not conclusive concerning the existence of the habitable-zone candidate HD40307 g. We also fully characterise the Neptune-mass planet that orbits HD204313 in 34.9 days. [less ▲]

Detailed reference viewed: 39 (0 ULg)