References of "Ruhnke, R"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailObserved and simulated time evolution of HCl, ClONO2, and HF total column abundances
Kohlhepp, R; Ruhnke, R; Chipperfield, M P et al

in Atmospheric Chemistry and Physics (2012), 12(7), 3527--3556

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra ... [more ▼]

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05°N and 77.82°S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1%yr-1. The models simulate an increase of HF of around 1%yr-1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 69 (14 ULg)
Full Text
See detailRecent evolution of stratospheric inorganic chlorine (Cly) inferred from long-term ground-based FTIR observations of HCl and ClONO2
Mahieu, Emmanuel ULg; Duchatelet, Pierre ULg; Zander, Rodolphe ULg et al

in Geophysical Research Abstracts (2007, May 02), 9

Over the past decades, the increase of the stratospheric inorganic chlorine (Cly) loading has been the major cause for the ozone layer depletion, a matter of particular concern because of its ... [more ▼]

Over the past decades, the increase of the stratospheric inorganic chlorine (Cly) loading has been the major cause for the ozone layer depletion, a matter of particular concern because of its anthropogenic nature. Fortunately, appropriate decisions have been defined and put into force at the international level, leading to regulations adopted within the frame of the Montreal Protocol and its Amendments and Adjustments, and aiming at the suppression of all chlorine-bearing source gas emissions. Since its formalization, the NDSC (Network for Detection of Stratospheric Change, recently renamed NDACC, Network for the Detection of Atmospheric Composition Change) has given high priority to the monitoring of Cly based on solar observations with Fourier transform infrared (FTIR) spectrometers operated at the ground. Within this context, high-resolution solar absorption spectra recorded at Northern and Southern mid-latitudes have been analyzed to retrieve total vertical column abundances of the two main inorganic chlorine species, i.e. HCl and ClONO2. At these latitudes and in the absence of chlorine activation, these two reservoirs account for more than 92% of the total Cly loading. In this contribution, column abundance time series of HCl and ClONO2 for both the Jungfraujoch (46.5°N) and Lauder (45°S) NDACC primary stations will be presented. Comparison of these measurements with the 3-D CTM KASIMA model predictions will be shown and discussed critically, with some focus on the time period following the peak loading. Related trends will be determined and compared to expectations deduced from the most recent emission scenarios. [less ▲]

Detailed reference viewed: 44 (6 ULg)