References of "Rossi, Laurence"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing
Seaton, Daniel; Berghmans, David; Nicula, Bogdan et al

in Solar Physics (2013), 286

The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral ... [more ▼]

The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54 × 54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weatherrelevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS–APS detector. This article provides reference documentation for users of the SWAP image data. [less ▲]

Detailed reference viewed: 19 (7 ULg)
Full Text
See detailJupiter system Ultraviolet Dynamics Explorer (JUDE), an instrument proposed for the ESA-JUICE mission
Grodent, Denis ULg; Bunce, Emma J.; Renotte, Etienne ULg et al

Report (2012)

In the proposal that follows we present a detailed concept for the science case, instrument requirements, technical design, calibration and operations, management structure, and financial plan for the ... [more ▼]

In the proposal that follows we present a detailed concept for the science case, instrument requirements, technical design, calibration and operations, management structure, and financial plan for the Jupiter system Ultraviolet Dynamics Experiment (JUDE), which will provide an outstanding solution to the UV instrumentation requirements for the JUICE mission. The JUDE instrument will represent a novel technical capability in UV instrumentation for planetary science, and will deliver the first true UV imaging capability beyond Earth orbit. The JUDE instrument design consists of two separate channels – the imaging channel (ImaC) and the spectrograph channel (SpeC), neither of which has any moving parts. This simple combination of two autonomous channels allows a true image and a spectrum at FUV wavelengths to be obtained simultaneously, allowing science goals to be realised which are not possible with a traditional scanning-slit imaging-spectrograph design The international consortium assembled to build the JUDE instrument is formed of two institutes from two European countries, and one from the United States. Prof. Denis Grodent (Université de Liège, Belgium) will act as the PI for the entire instrument team and the ULg/CSL team will provide a substantial hardware contribution to the instrument in the form of the optics, coatings, and Data Processing Unit (DPU). Dr Emma Bunce (University of Leicester, UK) will act as Co-PI for the instrument and the UoL team will supply the Micro-Channel Plate (MCP) detectors and read-out electronics. Prof. John Clarke (Co-I) of Boston University, USA will provide the grating element for the spectral channel of the instrument, in addition to instrument calibration activities. The science Co-Is are gathered from multiple institutes/nations including Belgium, UK, Germany, Italy, and the United States (see Part 1 for the full team list). Collectively, the team have decades of expertise in the areas of outer planet magnetospheres, planetary auroral and atmospheric emissions and surface UV observations from multiple platforms including Cassini UVIS, Juno UVS, Hubble Space Telescope, and numerous terrestrial missions. The team also have roles on non-UV instruments which will maximise the interpretation of the JUDE data. The two instrument channels are built on proven and robust technology with much flight heritage (e.g. Juno, Cassini, BepiColombo, IMAGE, ROSAT, Chandra, Voyager, Freja, DE-1, Swift). More specifically, the optics and focal plane detector proposed for the JUDE instrument are widely based on previous designs by CSL, at the ULg and UoL, for the FUV Spectro-Imager on the NASA IMAGE spacecraft, the UV Spectrograph on the NASA Juno mission to Jupiter, and the ROSAT Wide Field Camera. The data return from the instrument will greatly benefit the European and international science communities in planetary and terrestrial sciences, and the knowledge obtained will be generally applicable to broader astrophysics disciplines (e.g. extrasolar planetary physics). In answering the UV science objectives for the JUICE mission the JUDE instrument will clearly address the ESA Cosmic Vision Themes 1: What are the conditions for planet formation and the emergence of life? and 2: How does the Solar System work? The JUDE images (in particular) provide a clear path towards a high-level related programme of education and public outreach which the JUDE team are well equipped and keen to exploit. The JUDE instrument will contribute to all of the UV-related science objectives of JUICE, plus additional science objectives not listed in the Science Requirements Matrix. - At Ganymede and other moons (Europa and Callisto) JUDE will contribute directly to breakthroughs in the following scientific areas: 1) the characterisation of local environment, specifically through the first investigation of the morphology and variation of Ganymede’s aurora. A clear understanding of the auroral and atmospheric emissions at Ganymede will provide vital information on their formation mechanisms and will contribute to studies of the interaction of the Ganymede magnetosphere with Jupiter’s magnetosphere; 2) the first detailed observations of the satellites’ atmospheric (exosphere/ionosphere) composition and structure through measurements of their atmospheric emission and absorption spectra during multiple stellar occultation opportunities; and 3) the study of the satellites surface composition using surface reflectance measurements. The measurements at UV wavelengths are essential because they allow the study of the relationship between the satellites’ surface weathering, their atmospheres and the external environment which is mainly affected by the surrounding Jovian magnetosphere. By carefully studying processes at the surface and in the satellites’ atmospheres together, JUDE will provide the information required to distinguish between two classes of compositional heterogeneities at the satellites’ surfaces: 1) heterogeneities that arise from interaction with the external environment; 2) heterogeneities that arise from dynamical interaction with the subsurface. - With respect to Jupiter, JUDE will: 1) provide “state of the art” measurements of the Jovian atmospheric dynamics and transport through high temporal and spatial resolution auroral imaging; 2) allow a new understanding of the Jovian magnetosphere as a fast rotator through interpretation of the Jovian aurora as direct evidence for the 3D magnetosphere dynamics – a view which is continuously available in the planet’s upper atmosphere (independent of the spacecraft location within the magnetosphere); 3) investigate the magnetosphere as a giant accelerator through observations of the field-aligned current systems responsible for acceleration of electrons (and production of aurora); 4) discover the plasma sources and sinks of the moons through auroral imaging of the moon footprints in Jupiter’s atmosphere as a witness of the electromagnetic interactions taking place; 5) obtain new information on Jupiter’s atmospheric structure and composition through multiple stellar occultation opportunities. In addition, JUDE will make remote observations of the Io torus emissions and will provide the first in situ observation of the variability of the torus, over the lifetime of the mission, providing important information about the internal activity of the moon. JUDE offers a unique opportunity to obtain the first concurrent datasets of the different coupled elements of the Jupiter system: Io's atmosphere, aurora, the plasma torus, the Jovian plasma sheet and the Jovian aurora. The JUDE imaging and spectral channels are both designed to capture FUV lines from sulphur ions in the Io plasma torus. Finally, JUDE’s remote sensing capability offers an exciting opportunity to discover the Europa “plume” activity that may be present, through limb observations during flybys and from more distant observing locations. The Ganymede-focused and moon related science objectives will be addressed in the Ganymede orbit phase and during the multiple moon flybys, whilst the Jupiter science will be predominantly achieved during the Jupiter Equatorial Phases and during the high-inclination phase. The JUDE UV imager and spectrograph will produce discovery level science at Ganymede and the first true 2D UV images from Jupiter orbit. The exceptional JUICE trajectory affords many opportunities for breakthrough science discoveries in accordance with the SciRD; in addition to those, it provides unprecedented opportunities to directly witness the electromagnetic connection between Ganymede and Jupiter by making the first simultaneous UV observations of the respective atmospheres within the JUDE field-of-view. This is possible as a direct consequence of the JUDE true imaging capability. To successfully meet the science requirements outlined above, the JUDE ImaC has a spatial resolution of 20 arcsec over a circular field-of-view with 6˚ diameter, which allows a 100 km spatial resolution on Jupiter from Ganymede orbital distances (and 20 m resolution on Ganymede from 200 km, for example). JUDE’s ImaC mirrors and detector window will be covered with multilayer coatings which efficiently select a narrow bandpass from 130 to 143 nm, to allow measurements of the faint Oxygen lines at 130.4 nm and 135.6 nm in Ganymede’s (and other moon’s) atmosphere. This bandpass also allows observations of the SIV lines (between 140.5 and 142.4 nm) emitted within the Io plasma torus and in Io’s atmosphere. The bright Jovian emissions will also be suppressed within this bandpass which will necessarily limit the count rate to an acceptable level. The Ly-α line at 122 nm will be largely excluded as will the reflected sunlight longward of 150 nm. The sensitivity of the ImaC is 50 Rayleigh (at 3-sigma). The SpeC has a spectral resolution of 0.5 nm in order to meet the requirements of the SciRD, and has a field-of-view which is a 6˚ x 0.1˚ slit co-aligned with, and centred on, the ImaC circular field-of-view. The lower wavelength of the SpeC bandpass is set to ~110 nm in order to include the bright Ly-α line (useful to study the H corona) in a region of reduced transmission. The upper wavelength limit, ~195 nm, is such that transmission is slowly decreasing in the 180-195 nm spectral region, allowing measurements of the moon’s albedos beyond 165 nm, as well as the detection of compounds such as CO2, SO2, O2, O3, H2CO3 and H2O2 by comparing JUDE reflectance spectra to those obtained in laboratory studies. FUV emission lines from S and O are also observable within the bandpass and B-type stars emitting within this waveband will allow occultation experiments to be performed, to determine the composition and structure of the moon’s atmospheres and the detection of a possible Europa plume. The same is true for the Jovian atmosphere for which attenuation by H2 and hydrocarbons allows determination of the atmospheric structure. The sensitivity of the SpeC is 10 R/nm (at 3-sigma). The JUDE instrument channels: ImaC and the co-aligned SpeC, are both operating within the 110–195 nm range. Each channel has independent optics and detector elements, providing a level of redundancy such that loss of either imager or spectrograph does not constitute an entire loss of science. In contrast to more conventional (e.g. scanning or pushbroom) imaging spectrographs, JUDE can provide high time resolution (<1 second) high throughput images over a wide field of view (6° diameter) with no time variation across the field – a capability which is critical in gaining a better understanding of the complex dynamical processes taking place in the Jovian magnetosphere. The primary optic in each channel is a multilayer-coated mirror operating at normal incidence, with flight heritage in the form of the scan mirror in the Ultraviolet Spectrograph (UVS) now en-route to Jupiter onboard JUNO. The imaging channel uses a secondary mirror to of a similar type to focus the image onto the focal plane detector, while in the spectrograph channel, the secondary is a spherical, holographic grating. The spectrograph design is simple, with heritage in airglow spectrographs flown on terrestrial UV missions, and the Imaging UV Spectrograph for MAVEN. The grating element is produced by Jobin-Yvon, who have produced diffraction gratings for major missions including SOHO and HST. Each channel includes an identical microchannel plate (MCP) detector with the robust, radiation-tolerant performance required for a mission in the formidable environment of Jupiter. Such detectors are well proven, having flown on many missions including ROSAT (UoL heritage). They have also operated in the vicinity of Jupiter, in the focal plane of the UV spectrograph onboard the Voyager probes. The detector readout is a new type of capacitive division image charge readout (C-DIR; invented by Dr Jon Lapington) which offers, simultaneously, high spatial resolution and high count rate performance. Adaptive signal processing capabilities allow JUDE to accommodate the very wide dynamic range expected, from observations of Jupiter’s auroral ovals which emit with intensities of mega Rayleighs, to the weak (few tens of Rayleigh) emissions found at Ganymede. The readout structure is simple and robust, and has already been demonstrated in laboratory trials, while the electronics chain has its heritage in particle physics detectors, and has therefore been designed with radiation tolerance as a primary consideration. Pre-launch and in-flight calibrations will be implemented to assure that the JUDE data are suitable for quantitative scientific analysis. The proposed JUDE configuration successfully meets the scientific objectives of the JUICE mission. Our decision to implement an imaging channel instead of covering the MUV waveband increases the whole mission’s scientific output while remaining compliant with the MPDD. Due to its high-temporal resolution read-out system, JUDE is capable of producing volumes of data that are incompatible with the limited telemetry allocated to the UV instrument, even after a modest compression factor is applied. We therefore have proposed a mode of operation (the JUDE reference mode) which takes 1 minute snapshots over an observation opportunity (for example during a flyby sequence). Using this reference mode, and taking the maximum count rate estimates for the various targets, we find that the JUDE data volume is compliant with the tight allocation for the UV instrumentation of 40 GBytes/year The JUDE design presented in this proposal is above the mass allocation. We believe that all components of our design are necessary to reach the scientific goals of JUICE mission and that any major changes (such as the descope of a channel) will be at the considerable expense of the expected science return. However, further optimisation will be performed during the Phase A to bring JUDE into the allocated mass envelope while compromising its scientific return only slightly. We propose an efficient management structure with clearly delineated responsibilities. The Principal Investigator, Prof. Denis Grodent (Be) will take on the responsibilities as specified in the JUICE payload Announcement of Opportunity, supported closely by the Co-PI Dr Emma Bunce (UK) and by the team of Co-Investigators. The contribution of each country is represented by lead Co-Investigators: Prof. John Clarke (Boston University), Dr. Candy Hansen (PSI), and Dr Xianzhe Jia (University of Michigan), and Dr Nigel Bannister (UK) as CoI and Instrument Scientist (see Figure 1 below). The philosophy has been to assign well-defined tasks to each institute with an overall project manager to coordinate the efforts. The Consortium Project Manager (Etienne Renotte, CSL) will execute the managerial tasks relevant to the instrument development. The Product and Quality Assurance management will be implemented by all hardware contributors. Each consortium institute has a local project manager for their respective work packages, reporting to the Consortium Project Manager. The outreach potential of JUDE’s instantaneous wide field images is enormous. The potential PhD students of 2030 who we hope to educate and inspire with JUDE images and spectra are currently 3 years old; their supervisors are in secondary school. The team regards the educational aspects of the instrument and data as particularly important, and we plan a comprehensive JUDE/JUICE programme of outreach to schools and to the public, as part of the project and one which will be initiated upon selection. The national funding agency of Belgium serves as the Lead Funding Agency (LFA) for the JUDE instrument. The letters of endorsement from Belgium and United Kingdom are included in this proposal. Although the agencies endorse their respective national contributions, funding will be secured after the selection of the instrument proposal, according to the usual procedure. [less ▲]

Detailed reference viewed: 74 (16 ULg)
See detailUltrathin EUV Filters Testing and Characterization under High Flux (13 SC) for Solar Orbiter EUI Instrument
Jacques, Lionel ULg; Halain, Jean-Philippe ULg; Rossi, Laurence ULg et al

Conference (2011, October 07)

The test setup and characterization parameters of ultrathin EUV filters under high solar flux are presented. These 150nm thick aluminium filters are used at the entrance of the Extreme Ultraviolet Imager ... [more ▼]

The test setup and characterization parameters of ultrathin EUV filters under high solar flux are presented. These 150nm thick aluminium filters are used at the entrance of the Extreme Ultraviolet Imager (EUI) payload, which is developed at the Centre Spatial de Liège for the Solar Orbiter ESA M-class mission. The solar flux that they shall have to withstand will be as high as 13 solar constants when the spacecraft reach its 0.28AU perihelion. A specific design based on additional ribs has therefore been developed to enhance the thermal behaviour and heat evacuation while preserving its optical properties. It is essential to assess the design performances under the Solar Orbiter high solar flux. Therefore, thermal vacuum test under 13 solar constants will be performed. The filters temperature profiles will be measured during the tests through infrared imaging. A thermal correlation of the test will then be performed to deduce the filters actual thermal properties to be used in the global instrument geometrical and thermal mathematical models. [less ▲]

Detailed reference viewed: 65 (29 ULg)
Full Text
See detailThe technical challenges of the Solar-Orbiter EUI instrument
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Renotte, Etienne ULg et al

in Proceedings - Society of Photo-Optical Instrumentation Engineers (2010), 7732(26),

The Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter consists of a suite of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide EUV and Lyman-α images of the ... [more ▼]

The Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter consists of a suite of two high-resolution imagers (HRI) and one dual-band full Sun imager (FSI) that will provide EUV and Lyman-α images of the solar atmospheric layers above the photosphere. The EUI instrument is based on a set of challenging new technologies allowing to reach the scientific objectives and to cope with the hard space environment of the Solar Orbiter mission. The mechanical concept of the EUI instrument is based on a common structure supporting the HRI and FSI channels, and a separated electronic box. A heat rejection baffle system is used to reduce the Sun heat load and provide a first protection level against the solar disk straylight. The spectral bands are selected by thin filters and multilayer mirror coatings. The detectors are 10µm pitch back illuminated CMOS Active Pixel Sensors (APS), best suited for the EUI science requirements and radiation hardness. This paper presents the EUI instrument concept and its major sub-systems. The current developments of the instrument technologies are also summarized. [less ▲]

Detailed reference viewed: 40 (7 ULg)
Full Text
See detailLow Concentration Solar Array Experiment on-board PROBA-2
Ruelle, V.; Rossi, Laurence ULg; Thibert, Tanguy ULg et al

in Proceedings of the 8th Space Power Conference (2008, September)

Detailed reference viewed: 98 (34 ULg)
Full Text
See detailThe JWST MIRI Double-Prism, Design and Science Drivers
Fisher, Sebastian; Rossi, Laurence ULg; Renotte, Etienne ULg et al

in Proceedings of SPIE (2008, July 12), 7010

We present how it is achieved to mount a double prism in the filter wheel of MIRIM - the imager of JWST’s Mid Infrared Instrument. In order to cope with the extreme conditions of the prisms’ surroundings ... [more ▼]

We present how it is achieved to mount a double prism in the filter wheel of MIRIM - the imager of JWST’s Mid Infrared Instrument. In order to cope with the extreme conditions of the prisms’ surroundings, the low resolution double prism assembly (LRSDPA) design makes high demands on manufacturing accuracy. The design and the manufacturing of the mechanical parts are presented here, while ’Manufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager’ are described in a second paper [1]. We also give insights on the astronomical possibilities of a sensitive MIR spectrometer. Low resolution prism spectroscopy in the wavelength range from 5-10 microns will allow to spectroscopically determine redshifts of objects close to/at the re-ionization phase of the universe. [less ▲]

Detailed reference viewed: 12 (1 ULg)
Full Text
See detailManufacturing and verification of ZnS and Ge prisms for the JWST MIRI imager
Rossi, Laurence ULg; Renotte, Etienne ULg; Plesseria, Jean-Yves ULg et al

in Proceedings of SPIE (2008, June 23), 7018

The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA ... [more ▼]

The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA) allows MIRIM to perform low-resolution spectroscopy. The MIRIM DPA shall meet a number of challenging requirements in terms of optical and mechanical constraints, especially severe optical tolerances, limited envelope and very high vibration loads. <br />The University of Cologne (Germany) and the Centre Spatial de Liege (Belgium) are responsible for design, manufacturing, integration, and testing of the prism assembly. A companion paper (Fischer et al. 2008) is presenting the science drivers and mechanical design of the DPA, while this paper is focusing on optical manufacturing and overall verification processes. <br />The first part of this paper describes the manufacturing of Zinc-sulphide and Germanium prisms and techniques to ensure an accurate positioning of the prisms in their holder. (1) The delicate manufacturing of Ge and ZnS materials and (2) the severe specifications on the bearing and optical surfaces flatness and the tolerance on the prism optical angles make this process innovating. The specifications verification is carried out using mechanical and optical measurements; the implemented techniques are described in this paper. <br />The second part concerns the qualification program of the double-prism assembly, including the prisms, the holder and the prisms anti-reflective coatings qualification. Both predictions and actual test results are shown. [less ▲]

Detailed reference viewed: 26 (6 ULg)
Full Text
See detailSWAP: Sun watcher with a new EUV telescope on a technology demonstration platform
Defise, Jean-Marc ULg; Lecat, Jean-Hervé ULg; Mazy, Emmanuel ULg et al

in 5th International Conference on Space Optics (2004, June 01)

SWAP (SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-2 technology demonstration platform, a program of the European ... [more ▼]

SWAP (SWAP (Sun Watcher using Active Pixel System detector and Image Processing) is an instrument that has been selected to fly on the PROBA-2 technology demonstration platform, a program of the European Space Agency (ESA) to be launched in 2006. SWAP is based on an off-axis degraded Ritchey Chretien telescope that will image the EUV solar corona at 19.5 nm on a specifically fabricated extreme ultraviolet (EUV) sensitivity enhanced CMOS APS detector. The optical design and the optical coatings are derived from the Extreme Ultraviolet Imaging Telescope (EIT) operating on-board SOHO since 1995. It has been adapted for a single wavelength telescope with off-axis optics. It allows to use smaller optics and filters, with simple internal baffles avoiding external protruding parts. The superpolished optics will receive a multilayer coating that provides spectral selection centred on 19.5 nm and EUV reflectivity in normal incidence. This compact design is specifically adapted for accommodation on PROBA-2, where mass and envelope requirements are very stringent The SWAP PROBA-2 program will be an opportunity to demonstrate this new optical concept, while it will also validate space remote sensing with APS detectors, as well as on-board image processing capabilities. On the science outcomes, SWAP will provide solar corona images in the Fe XII line on a baselined 2-min cadence. Observations with this specific wavelength allow detecting phenomena, such as solar flares or 'EIT-waves', associated with the early phase of coronal mass ejections. The SWAP data will complement the observations provided by SOHO-EIT, and STEREO-SECCHI. [less ▲]

Detailed reference viewed: 59 (8 ULg)
Full Text
See detailMAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory
Rochus, Pierre ULg; Defise, Jean-Marc ULg; Halain, Jean-Philippe ULg et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2004, February 01)

The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the ... [more ▼]

The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the connection of plasma dynamics with magnetic activity throughout the solar atmosphere. The AIA consists of 7 high-resolution imaging telescopes in the following spectral bandpasses: 1215Å. Ly-a, 304 Å He II, 629 Å OV, 465 Å Ne VII, 195 Å Fe XII (includes Fe XXIV), 284 Å Fe XV, and 335 Å Fe XVI. The telescopes are grouped by instrumental approach: the MAGRITTE Filtergraphs (R. MAGRITTE, famous 20th Century Belgian Surrealistic Artist), five multilayer EUV channels with bandpasses ranging from 195 to 1216 Å, and the SPECTRE Spectroheliograph with one soft-EUV channel at OV 629 Å. They will be simultaneously operated with a 10-second imaging cadence. These two instruments, the electronic boxes and two redundant Guide Telescopes (GT) constitute the AIA suite. They will be mounted and coaligned on a dedicated common optical bench. The GTs will provide pointing jitter information to the whole SHARPP assembly. This paper presents the selected technologies, the different challenges, the trade-offs to be made in phase A, and the model philosophy. From a scientific viewpoint, the unique combination high temporal and spatial resolutions with the simultaneous multi-channel capability will allow MAGRITTE / SPECTRE to explore new domains in the dynamics of the solar atmosphere, in particular the fast small-scale phenomena. We show how the spectral channels of the different instruments were derived to fulfill the AIA scientific objectives, and we outline how this imager array will address key science issues, like the transition region and coronal waves or flare precursors, in coordination with other SDO experiments. We finally describe the real-time solar monitoring products that will be made available for space-weather forecasting applications. [less ▲]

Detailed reference viewed: 94 (7 ULg)