References of "Riters, Lauren V"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSEASONAL AND INDIVIDUAL VARIATION IN SINGING BEHAVIOR CORRELATES WITH ALPHA 2-NORADRENERGIC RECEPTOR DENSITY IN BRAIN REGIONS IMPLICATED IN SONG, SEXUAL, AND SOCIAL BEHAVIOR
Heimovics, Sarah A.; Cornil, Charlotte ULg; Hellis, J. M. S. et al

in Neuroscience (2011), 182

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal ... [more ▼]

In seasonally breeding male songbirds, both the function of song and the stimuli that elicit singing behavior change seasonally. The catecholamine norepinephrine (NE) modulates attention and arousal across behavioral states, yet the role of NE in seasonally-appropriate vocal communication has not been well-studied. The present study explored the possibility that seasonal changes in alpha 2-noradrenergic receptors (alpha2-R) within song control regions and brain regions implicated in sexual arousal and social behavior contribute to seasonal changes in song behavior in male European starlings (Sturnus vulgaris). We quantified singing behavior in aviary housed males under spring breeding season conditions and fall conditions. alpha2-R were identified with the selective ligand [3H]RX821002 using autoradiographic methods. The densities of alpha2-R in song control regions (HVC and the robust nucleus of the arcopallium [RA]) and the lateral septum (LS) were lower in Spring Condition males. alpha2-R densities in the caudal portion of the medial preoptic nucleus (POM) related negatively to singing behavior. Testosterone concentrations were highest in Spring Condition males and correlated with alpha2-R in LS and POM. Results link persistent seasonal alterations in the structure or function of male song to seasonal changes in NE alpha2-Rs in HVC, RA, and LS. Individual differences in alpha2-R in the POM may in part explain individual differences in song production irrespective of the context in which a male is singing, perhaps through NE modification of male sexual arousal. [less ▲]

Detailed reference viewed: 23 (8 ULg)
Full Text
Peer Reviewed
See detailD1-like dopamine receptor density in nuclei involved in social behavior correlates with song in a context-dependent fashion in male European starlings.
Heimovics, Sarah A.; Cornil, Charlotte ULg; Ball, Gregory F. et al

in Neuroscience (2009), 159(3), 962-73

Research in songbirds shows that singing behavior is regulated by both brain areas involved in vocal behavior as well as those involved in social behavior. Interestingly, the precise role of these regions ... [more ▼]

Research in songbirds shows that singing behavior is regulated by both brain areas involved in vocal behavior as well as those involved in social behavior. Interestingly, the precise role of these regions in song can vary as a function of the social, environmental and breeding context. To date, little is known about the neurotransmitters underlying such context-dependent regulation of song. Dopamine (DA) modulates highly motivated, goal-directed behaviors (including sexually motivated song) and emerging data implicate DA in the context-dependent regulation of singing behavior. This study was performed to begin to examine whether differences in DA receptors may underlie, in part, context-dependent differences in song production. We used autoradiographic procedures to label D1-like and D2-like DA receptors to examine the relationship between DA receptor density and singing behavior in multiple contexts in male European starlings (Sturnus vulgaris). Within a breeding context (when testosterone (T) was high), D1-like receptor density in the medial preoptic nucleus (POM) and midbrain central gray (GCt) negatively correlated with song used to attract a female. Additionally in this context, D1-like receptor density in POM, GCt, medial bed nucleus of the stria terminalis (BSTm), and lateral septum (LS) negatively correlated with song likely used to defend a nest box. In contrast, in a non-breeding context (when T was low), D1-like receptor density in POM and LS positively correlated with song used to maintain social flocks. No relationships were identified between song in any context and D2-like receptor densities. Differences in the brain regions and directional relationships between D1-like receptor binding and song suggest that dopaminergic systems play a region and context-specific role in song. These data also suggest that individual variation in singing behavior may, in part, be explained by individual differences in D1-like receptor density in brain regions implicated in social behavior. [less ▲]

Detailed reference viewed: 39 (4 ULg)
Full Text
Peer Reviewed
See detailSeasonal plasticity in the song control system - Multiple brain sites of steroid hormone action and the importance of variation in song behavior
Ball, Gregory F.; Auger, Catherine J.; Bernard, Daniel J. et al

in Annals of the New York Academy of Sciences (2004), 1016

Birdsong, in non-tropical species, is generally more common in spring and summer when males sing to attract mates and/or defend territories. Changes in the volumes of song control nuclei, such as HVC and ... [more ▼]

Birdsong, in non-tropical species, is generally more common in spring and summer when males sing to attract mates and/or defend territories. Changes in the volumes of song control nuclei, such as HVC and the robust nucleus of the arcopallium (RA), are observed seasonally. Long photoperiods in spring stimulate the recrudescence of the testes and the release of testosterone. Androgen receptors, and at times estrogen receptors, are present in HVC and RA as are co-factors that facilitate the transcriptional activity of these receptors. Thus testosterone can act directly to induce changes in nucleus volume. However, dissociations have been identified at times among long photoperiods, maximal concentrations of testosterone, large song control nuclei, and high rates of song. One explanation of these dissociations is that song behavior itself can influence neural plasticity in the song system. Testosterone can act via brain-derived neurotrophic factor (BDNF) that is also released in HVC as a result of song activity. Testosterone could enhance song nucleus volume indirectly by acting in the preoptic area, a region regulating sexual behaviors, including song, that connects to the song system through catecholaminergic cells. Seasonal neuroplasticity in the song system involves an interplay among seasonal state, testosterone action, and behavioral activity. [less ▲]

Detailed reference viewed: 37 (4 ULg)