References of "Renotte, Etienne"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailVUV Optical Ground System Equipment and its application to the ICON FUV flight grating characterization and selection
Blain, Pascal ULg; Desselle, Richard ULg; Domken, Isabelle ULg et al

in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation (2016, June)

ICON FUV is a two channel spectrographic imager that measures intensity and spatial distribution of oxygen (135.6 nm) and molecular nitrogen (157 nm) of the ionosphere. As those wavelengths are strongly ... [more ▼]

ICON FUV is a two channel spectrographic imager that measures intensity and spatial distribution of oxygen (135.6 nm) and molecular nitrogen (157 nm) of the ionosphere. As those wavelengths are strongly absorbed by the atmosphere, the optical elements of the system have to be tested inside vacuum chambers. Prior to the instrument alignment and calibration, two 3600 gr/mm gratings were characterized. The primary focus is the measurement of the diffraction efficiencies; while the second objective is to select the best grating and to define which is the flight and the spare. A dedicated setup has been developed to assess the grating optical performances under vacuum. A 1 cm diameter collimated beam is generated using an off-axis parabola and a UV source at its focal point. The grating is placed at the center of two rotation stages collinearly aligned. One detector is placed on a rotating arm, deported from its rotation center. A PMT detector records diffracted light intensity with respect to its angular position and its wavelength. Angular incidence on the grating is tuned with the help of the second rotation stage. The grating efficiency homogeneity and scattering properties are measured through a Y-X scan. [less ▲]

Detailed reference viewed: 23 (12 ULg)
Full Text
Peer Reviewed
See detailAlignment and calibration of the ICON-FUV instrument: Development of a vacuum UV facility
Loicq, Jerôme ULg; Blain, Pascal ULg; Kintziger, Christian ULg et al

in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray (2016, June)

The optical calibration of the ICON-FUV instrument requires designing specific ground support equipment (GSE). The ICON-FUV instrument is a spectrographic imager that operates on two specific wavelengths ... [more ▼]

The optical calibration of the ICON-FUV instrument requires designing specific ground support equipment (GSE). The ICON-FUV instrument is a spectrographic imager that operates on two specific wavelengths in the UV (135.6 nm and 157 nm). All the operations have to be performed under vacuum UV light. The optical setup is based on a VUV monochromator coupled with a collimator that illuminates the FUV entrance slit. The instrument is placed on a manipulator providing fields pointing. Image quality and spectral properties can be then characterized for each field. OGSE, MGSE, optical calibration plan and vacuum alignment of the instrument are described. [less ▲]

Detailed reference viewed: 28 (16 ULg)
Full Text
See detailFormation flying metrology for the ESA-PROBA3 mission: the Shadow Position Sensors (SPS) silicon photomultipliers (SiPMs) readout electronics
Focardi, M.; Bemporad, A.; Buckley, S. et al

in Proc. SPIE Volume 9604 Solar Physics and Space Weather Instrumentation VI (2015, September 21)

The European Space Agency (ESA) is planning to launch in 2018 the PROBA3 Mission, designed to demonstrate the inorbit formation flying (FF) attitude capability of its two satellites and to observe the ... [more ▼]

The European Space Agency (ESA) is planning to launch in 2018 the PROBA3 Mission, designed to demonstrate the inorbit formation flying (FF) attitude capability of its two satellites and to observe the inner part of the visible solar corona as the main scientific objective. The solar corona will be observed thanks to the presence on the first satellite, facing the Sun, of an external occulter producing an artificial eclipse of the Sun disk. The second satellite will carry on the coronagraph telescope and the digital camera system in order to perform imaging of the inner part of the corona in visible polarized light, from 1.08 Rsun up to about 3 Rsun. One of the main metrological subsystems used to control and to maintain the relative (i.e. between the two satellites) and absolute (i.e. with respect to the Sun) FF attitude is the Shadow Position Sensor (SPS) assembly. It is composed of eight micro arrays of silicon photomultipliers (SiPMs) able to measure with the required sensitivity and dynamic range the penumbral light intensity on the Coronagraph entrance pupil. In the following of the present paper we describe the overall SPS subsystem and its readout electronics with respect to the capability to satisfy the mission requirements, from the light conversion process on board the silicon-based SPS devices up to the digital signal readout and sampling. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
See detailThe Shadow Positioning Sensors (SPS) for formation flying metrology on-board the ESA-PROBA3 mission
Bemporad, A.; Baccani, C.; Capobianco, G. et al

in Proc. SPIE Volume 9604 Solar Physics and Space Weather Instrumentation VI (2015, September 21)

PROBA3 is an ESA technology mission devoted to in-orbit demonstration of the formation flight (FF) technique, with two satellites kept at an average inter-distance by about 144 m. The ASPIICS instrument ... [more ▼]

PROBA3 is an ESA technology mission devoted to in-orbit demonstration of the formation flight (FF) technique, with two satellites kept at an average inter-distance by about 144 m. The ASPIICS instrument on-board PROBA3 will be the first ever space-based coronagraph working on one satellite and having the external occulter located on the second satellite, thus allowing observations of the inner solar corona with unprecedented reduction of stray light. During the observational periods, the FF configuration will be maintained with very high precision and two different techniques will be implemented: the use of Shadow Positioning Sensors (SPS) located on the Coronagraph Spacecraft (diodes measuring the penumbral light intensity on the entrance pupil plane) and the use of Occulter Position Sensor LEDs (OPSE) located on the back side of the Occulter Spacecraft. This paper will review the main instrumental requirements on the SPS needed to determine the 3-dimensional relative positioning of the two PROBA3 satellites with the high precision and frequency. [less ▲]

Detailed reference viewed: 22 (5 ULg)
Full Text
See detailSignificance of the occulter diffraction for the PROBA3/ASPIICS formation flight metrology
Landini, F.; Bemporad, A.; Focardi, M. et al

in Proc. SPIE Volume 9604 Solar Physics and Space Weather Instrumentation VI (2015, September 21)

PROBA-3/ASPIICS is a formation Flying coronagraph selected by ESA and currently in its C/D phase. It is constituted by two spacecrafts (OSC, Occulter SpaceCraft, carrying the occulter, diameter 142 cm ... [more ▼]

PROBA-3/ASPIICS is a formation Flying coronagraph selected by ESA and currently in its C/D phase. It is constituted by two spacecrafts (OSC, Occulter SpaceCraft, carrying the occulter, diameter 142 cm, and CSC, Coronagraph SpaceCraft, with the telescope) separated by ~144 m, kept in strict alignment by means of an active custom system. The alignment active system most critical components are the Shadow Positioning Sensors (SPS), a series of Si-PM (Silicon Photomultiplier) measuring the penumbra generated by the occulter. The arrangement of the SPSs around the telescope entrance aperture is defined as a trade-off between mechanical constraints and maximum sensitivity to misalignments. The signal detected by the SPSs can be approximately simulated with a geometrical analysis based on the variation of the penumbra generated by the external occulter. The stray light generated by the diffraction from the external occulter may affect the SPSs signal. It is mandatory to carefully evaluate its level in order to refine the active alignment adjustment algorithm. This work is dedicated to the description of the preliminary investigation performed in order to evaluate the impact of the diffraction on the SPSs signal. [less ▲]

Detailed reference viewed: 15 (4 ULg)
Full Text
See detailDesign status of ASPIICS, an externally occulted coronagraph for PROBA-3
Renotte, Etienne ULg; Alia, A.; Bemporad, A. et al

in Proc. SPIE Volume 9604 Solar Physics and Space Weather Instrumentation VI (2015, September 21)

The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona ... [more ▼]

The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.15 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase. [less ▲]

Detailed reference viewed: 71 (30 ULg)
Full Text
See detailOPSE metrology system onboard of the PROBA3 mission of ESA
Loreggia, D.; Bemporad, A.; Capobianco, G. et al

in Proc. SPIE Volume 9604 Solar Physics and Space Weather Instrumentation VI (2015, September 21)

In recent years, ESA has assessed several mission involving formation flying (FF). The great interest in this topics is mainly driven by the need for moving from ground to space the location of next ... [more ▼]

In recent years, ESA has assessed several mission involving formation flying (FF). The great interest in this topics is mainly driven by the need for moving from ground to space the location of next generation astronomical telescopes overcoming most of the critical problems, as example the construction of huge baselines for interferometry. In this scenario, metrology systems play a critical role. PROBA3 is an ESA technology mission devoted to in-orbit demonstration of the FF technique, with two satellites, an occulter and a main satellite housing a coronagraph named ASPIICS, kept at an average inter-distance by about 144m, with micron scale accuracy. The guiding proposal is to test several metrology solution for spacecraft alignment, with the important scientific return of having observation of Corona at never reached before angular field. The Shadow Position Sensors (SPS), and the Optical Position Emitters Sensors (OPSE) are two of the systems used for FF fine tracking. The SPS are finalized to monitor the position of the two spacecraft with respect to the Sun and are discussed in dedicated papers presented in this conference. The OPSE will monitor the relative position of the two satellites and consists of 3 emitters positioned on the rear surface of the occulter, that will be observed by the coronagraph itself. By following the evolution of the emitters images at the focal plane the alignment of the two spacecrafts is retrieved via dedicated centroiding algoritm. We present an overview of the OPSE system and of the centroiding approach. [less ▲]

Detailed reference viewed: 32 (4 ULg)
Full Text
See detailDesign and modelisation of ASPIICS optics
Galy, Camille ULg; Fineschi, S.; Galano, D. et al

in Proc. SPIE Volume 9604 Solar Physics and Space Weather Instrumentation VI (2015, September 21)

In the framework of development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), the Centre Spatial de Liege is responsible of the optical design ... [more ▼]

In the framework of development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), the Centre Spatial de Liege is responsible of the optical design of the coronagraph and the optics will be manufactured by TOPTEC. The particularity of this coronagraph is to have an external occulter located 150 m ahead of the first imaging lens. This external occulter is re-imaged on an internal occulter which function is - as in a classical externally occulted Lyot coronagraph - to block the sun light diffracted by the external occulter and to reduce the straylight on the detector. The selection of this configuration is driven by the requirement to observe the corona as close as possible to the solar limb (i.e. 1 RSun) without imaging the limb itself. A requirement of 1.08 RSun is specified at optical design level to grant 1.2 Rsun at instrument level. The coronograph instrument is designed to have a field of view of 1.6° x 1.6° with a resolution of less than 6 arcsec. Its performances are limited by diffraction in a 530 – 590 nm wavelength range. This paper presents the optical design and demonstrates that by design the requirements are fulfilled within the misalignment, manufacturing and thermo-elastic error contributions. [less ▲]

Detailed reference viewed: 50 (28 ULg)
Full Text
See detailThermal Balance Test of Solar Orbiter EUI Instrument Structural and Thermal Model with 13 Solar Constants
Jacques, Lionel ULg; Halain, Jean-Philippe ULg; Rossi, Laurence ULg et al

Scientific conference (2015, March 26)

Developed by a European consortium led by the Centre Spatial de Liège in Belgium, the Extreme Ultraviolet Imager (EUI) is an instrument onboard the Solar Orbiter ESA M-class mission. At its 0.28AU ... [more ▼]

Developed by a European consortium led by the Centre Spatial de Liège in Belgium, the Extreme Ultraviolet Imager (EUI) is an instrument onboard the Solar Orbiter ESA M-class mission. At its 0.28AU perihelion, the spacecraft will be exposed to a 13 solar constants solar flux. EUI is protected behind the spacecraft heat shield but for three apertures for its telescopes looking at the Sun in the Extreme-UV. To better reject the unwanted visible light and protect 150nm thick EUV filters, Aluminum coated carbon-fiber-reinforced plastics entrance baffles are located at the front of the instrument. The residual absorbed heat by the entrance filters and baffles is evacuated through heat pipes to a dedicated spacecraft thermal interface. To verify its thermal design, the instrument structural and thermal model has been tested in a vacuum chamber with a solar simulator providing the 13 solar constants solar flux at the three entrance apertures and dedicated heaters to model the spacecraft heat shield feedthroughs. To assess the off-pointing performance of the entrance baffles, the instrument was mounted onto a rotating structure inside the chamber. The test setup, results and the thermal model correlation will be presented as well as the calibration of the solar simulator divergence and intensity. [less ▲]

Detailed reference viewed: 98 (18 ULg)
Full Text
See detailThe extreme UV imager telescope on-board the Solar Orbiter mission: overview of phase C and D
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Renotte, Etienne ULg et al

in SPIE Optical Engineering+ Applications (2015)

The Solar Orbiter mission is composed of ten scientific instruments dedicated to the observation of the Sun’s atmosphere and its heliosphere, taking advantage of an out-of ecliptic orbit and at perihelion ... [more ▼]

The Solar Orbiter mission is composed of ten scientific instruments dedicated to the observation of the Sun’s atmosphere and its heliosphere, taking advantage of an out-of ecliptic orbit and at perihelion reaching a proximity close to 0.28 A.U. On board Solar Orbiter, the Extreme Ultraviolet Imager (EUI) will provide full-Sun image sequences of the solar corona in the extreme ultraviolet (17.1 nm and 30.4 nm), and high-resolution image sequences of the solar disk in the extreme ultraviolet (17.1 nm) and in the vacuum ultraviolet (121.6 nm). The EUI concept uses heritage from previous similar extreme ultraviolet instrument. Additional constraints from the specific orbit (thermal and radiation environment, limited telemetry download) however required dedicated technologies to achieve the scientific objectives of the mission. The development phase C of the instrument and its sub-systems has been successfully completed, including thermo-mechanical and electrical design validations with the Structural Thermal Model (STM) and the Engineering Model (EM). The instrument STM and EM units have been integrated on the respective spacecraft models and will undergo the system level tests. In parallel, the Phase D has been started with the sub-system qualifications and the flight parts manufacturing. The next steps of the EUI development will be the instrument Qualification Model (QM) integration and qualification tests. The Flight Model (FM) instrument activities will then follow with the acceptance tests and calibration campaigns. [less ▲]

Detailed reference viewed: 20 (5 ULg)
Full Text
Peer Reviewed
See detailThe extreme ultraviolet imager of solar orbiter: optical design and alignment scheme
Halain, Jean-Philippe ULg; Mazzoli, Alexandra ULg; Meining, S. et al

in SPIE Optical Engineering+ Applications (2015)

Detailed reference viewed: 14 (6 ULg)
Full Text
See detailNew Monolithic High Solar Rejection EUV Transmission Filter
Fleury-Frenette, Karl ULg; Renotte, Etienne ULg; Lenaerts, Cedric ULg et al

Conference (2014, August)

New Monolithic High Solar Rejection EUV Transmission Filter Fleury-Frenette, Karl; Renotte, Etienne; Lenaerts, C.; Rossi, Laurence; Jacques, Lionel; Halain, Jean-Philippe; Rochus, Pierre 40th COSPAR ... [more ▼]

New Monolithic High Solar Rejection EUV Transmission Filter Fleury-Frenette, Karl; Renotte, Etienne; Lenaerts, C.; Rossi, Laurence; Jacques, Lionel; Halain, Jean-Philippe; Rochus, Pierre 40th COSPAR Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, Abstract D2.3-22-14. A new high solar rejection transmission filter for the extreme UV has been developed for the Solar Orbiter Extreme Ultraviolet Imager (EUI). To provide enhanced resilience to high thermal load, a monolithic architecture approach has been taken in order to limit the thermal contact resistance between the filtering sub-micron thin film, its supporting mesh, and holding frame. Some aspects of the manufacturing process involving thin film deposition and photolithography will be presented along with optical performance and space environmental test results. New avenues for improving the thermo-optical properties of the filter will also be discussed. [less ▲]

Detailed reference viewed: 77 (10 ULg)
Full Text
See detailThe X-ray Integral Field Unit (X-IFU) for Athena
Ravera, Laurent; Barret, Didier; den Herder, Jan Willem et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2014, July 01)

Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload ... [more ▼]

Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2:5 eV spectral resolution, with ~5" pixels, over a field of view of 50 in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain. [less ▲]

Detailed reference viewed: 46 (3 ULg)
Full Text
See detailSpace radiation parameters for EUI and the Sun Sensor of Solar Orbiter, ESIO and JUDE instruments
Rossi, Laurence ULg; Jacques, Lionel ULg; Halain, Jean-Philippe ULg et al

in Proceedings of SPIE (2014, June 18)

This paper presents predictions of space radiation parameters for four space instruments performed by the Centre Spatial de Liège (ULg – Belgium); EUI, the Extreme Ultra-violet Instrument, on-board the ... [more ▼]

This paper presents predictions of space radiation parameters for four space instruments performed by the Centre Spatial de Liège (ULg – Belgium); EUI, the Extreme Ultra-violet Instrument, on-board the Solar Orbiter platform; ESIO, Extreme-UV solar Imager for Operations, and JUDE, the Jupiter system Ultraviolet Dynamics Experiment, which was proposed for the JUICE platform. For Solar Orbiter platform, the radiation environment is defined by ESA environmental specification and the determination of the parameters is done through ray-trace analyses inside the EUI instrument. For ESIO instrument, the radiation environment of the geostationary orbit is defined through simulations of the trapped particles flux, the energetic solar protons flux and the galactic cosmic rays flux, taking the ECSS standard for space environment as a guideline. Then ray-trace analyses inside the instrument are performed to predict the particles fluxes at the level of the most radiation-sensitive elements of the instrument. For JUICE, the spacecraft trajectory is built from ephemeris files provided by ESA and the radiation environment is modeled through simulations by JOSE (Jovian Specification Environment model) then ray-trace analyses inside the instrument are performed to predict the particles fluxes at the level of the most radiation-sensitive elements of the instrument. [less ▲]

Detailed reference viewed: 44 (12 ULg)
Full Text
See detailSolar simulation test up to 13 solar constants for the thermal balance of the Solar Orbiter EUI instrument
Rossi, Laurence ULg; zhukova, Maria; Jacques, Lionel ULg et al

in Proceedings of SPIE (2014, June 18)

Solar Orbiter EUI instrument was submitted to a high solar flux to correlate the thermal model of the instrument. EUI, the Extreme Ultraviolet Imager, is developed by a European consortium led by the ... [more ▼]

Solar Orbiter EUI instrument was submitted to a high solar flux to correlate the thermal model of the instrument. EUI, the Extreme Ultraviolet Imager, is developed by a European consortium led by the Centre Spatial de Liège for the Solar Orbiter ESA M-class mission. The solar flux that it shall have to withstand will be as high as 13 solar constants when the spacecraft reaches its 0.28AU perihelion. It is essential to verify the thermal design of the instrument, especially the heat evacuation property and to assess the thermo-mechanical behavior of the instrument when submitted to high thermal load. Therefore, a thermal balance test under 13 solar constants was performed on the first model of EUI, the Structural and Thermal Model. The optical analyses and experiments performed to characterize accurately the thermal and divergence parameters of the flux are presented; the set-up of the test, and the correlation with the thermal model performed to deduce the unknown thermal parameters of the instrument and assess its temperature profile under real flight conditions are also presented. [less ▲]

Detailed reference viewed: 51 (19 ULg)
Full Text
See detailASPIICS: an externally occulted coronagraph for PROBA-3.Design evolution.
Renotte, Etienne ULg; Carmen Baston, Elena; Bemporad, Alessandro et al

in SPIE 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave (2014)

PROBA-3 is a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future ESA missions. PROBA-3 will fly ASPIICS (Association de Satellites pour ... [more ▼]

PROBA-3 is a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future ESA missions. PROBA-3 will fly ASPIICS (Association de Satellites pour l’Imagerie et l’Interferométrie de la Couronne Solaire) as primary payload, which makes use of the formation flying technique to form a giant coronagraph capable of producing a nearly perfect eclipse allowing to observe the sun corona closer to the rim than ever before. The coronagraph is distributed over two satellites flying in formation (approx. 150m apart). The so called Coronagraph Satellite carries the camera and the so called Occulter Satellite carries the sun occulter disc. This paper is reviewing the design and evolution of the ASPIICS instrument as at the beginning of Phase C/D. [less ▲]

Detailed reference viewed: 11 (3 ULg)
Full Text
See detailThe Extreme UV Imager of Solar Orbiter – From detailed design to Flight Model
Halain, Jean-Philippe ULg; Rochus, Pierre ULg; Renotte, Etienne ULg et al

in Proceedings of SPIE (2014), 9144

The Extreme Ultraviolet Imager (EUI) on-board the Solar Orbiter mission will provide full-sun and high-resolution image sequences of the solar atmosphere at selected spectral emission lines in the extreme ... [more ▼]

The Extreme Ultraviolet Imager (EUI) on-board the Solar Orbiter mission will provide full-sun and high-resolution image sequences of the solar atmosphere at selected spectral emission lines in the extreme and vacuum ultraviolet. After the breadboarding and prototyping activities that focused on key technologies, the EUI project has completed the design phase and has started the final manufacturing of the instrument and its validation. The EUI instrument has successfully passed its Critical Design Review (CDR). The process validated the detailed design of the Optical Bench unit and of its sub-units (entrance baffles, doors, mirrors, camera, and filter wheel mechanisms), and of the Electronic Box unit. In the same timeframe, the Structural and Thermal Model (STM) test campaign of the two units have been achieved, and allowed to correlate the associated mathematical models. The lessons learned from STM and the detailed design served as input to release the manufacturing of the Qualification Model (QM) and of the Flight Model (FM). The QM will serve to qualify the instrument units and sub-units, in advance of the FM acceptance tests and final on-ground calibration. [less ▲]

Detailed reference viewed: 43 (11 ULg)
Full Text
See detailThe Hot and Energetic Universe: The X-ray Integral Field Unit (X-IFU) for Athena+
Barret, D.; den Herder, J. W.; Piro, L. et al

Report (2013)

The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the ... [more ▼]

The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the L2 and L3 missions of its science program. The Athena+ science payload consists of a large aperture high angular resolution X-ray optics and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2.5 eV spectral resolution, with ~5" pixels, over a field of view of 5 arc minutes in diameter. In this paper, we briefly describe the Athena+ mission concept and the X-IFU performance requirements. We then present the X-IFU detector and readout electronics principles, the current design of the focal plane assembly, the cooling chain and review the global architecture design. Finally, we describe the current performance estimates, in terms of effective area, particle background rejection, count rate capability and velocity measurements. Finally, we emphasize on the latest technology developments concerning TES array fabrication, spectral resolution and readout performance achieved to show that significant progresses are being accomplished towards the demanding X-IFU requirements. [less ▲]

Detailed reference viewed: 24 (4 ULg)
Full Text
See detailCHEOPS: A transit photometry mission for ESA's small mission programme
Broeg, C.; Fortier, A.; Ehrenreich, D. et al

in Saglia, Roberto (Ed.) European Physical Journal Web of Conferences (2013, April 01)

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and ... [more ▼]

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite) will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes. [less ▲]

Detailed reference viewed: 18 (3 ULg)