References of "Renard, Stephanie"
     in
Bookmark and Share    
Full Text
See detailProspects for Near-infrared Characterisation of Hot Jupiters with the VLTI Spectro-imager (VSI)
Renard, Stéphanie; Absil, Olivier ULg; Berger, Jean-Philippe et al

in Moorwood, A. (Ed.) Science with the VLT in the ELT Era (2009)

Since the discovery of the first exoplanet around 51 Pegasi, the study of planetary systems receives an increasing attention, with the development and test of more and more detection techniques. Among the ... [more ▼]

Since the discovery of the first exoplanet around 51 Pegasi, the study of planetary systems receives an increasing attention, with the development and test of more and more detection techniques. Among the direct detection techniques, interferometry is one of the most promising for the near future. It already provides the required angular resolution, but the dynamic range needs to be improved. The detection and characterisation of extrasolar planets is one of the main science cases of the 2nd generation VLTI Spectro-Imager instrument (VSI). The goal of this work is to study the feasibility of obtaining near-infrared spectra of bright extrasolar giant planets (EGP) with VSI. [less ▲]

Detailed reference viewed: 9 (0 ULg)
Full Text
See detailScience case for 1 mas spectro-imagining in the near-infrared
Garcia, Paulo J V; Berger, Jean-Phillipe; Marconi, Alessandro et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

We present the work developed within the science team of the Very Large Telescope Interferometer Spectro-Imager (VSI) during the Phase A studies. VSI aims at delivering ~ 1 milliarcsecond resolution data ... [more ▼]

We present the work developed within the science team of the Very Large Telescope Interferometer Spectro-Imager (VSI) during the Phase A studies. VSI aims at delivering ~ 1 milliarcsecond resolution data cubes in the near-infrared, with several spectral resolutions up to 12 000, by combining up to 8 VLTI telescopes. In the design of an instrument, the science case plays a central role by supporting the instrument construction decision, defining the top-level requirements and balancing design options. The overall science philosophy of VSI was that of a general user instrument serving a broad community. The science team addressed themes which included several areas of astrophysics and illustrated specific modes of operation of the instrument: a) YSO disks and winds; b) Multiplicity of young stars; c) Exoplanets; d) Debris disks; e) Stellar surface imaging; f) The environments of evolved stars; g) AGN tori; h) AGN's Broad Line Region; i) Supermassive black-holes; and j) Microlensing. The main conclusions can be summarized as follows: a) The accessible targets and related science are extremely sensitive to the instrument limiting magnitude; the instrument should be optimized for sensitivity and have its own fringe tracker. b) Most of the science cases are readily achievable with on-axis fringe tracking, off-axis fringe tracking enabling extra science. c) In most targets (YSOs, evolved stars and AGNs), the interpretation and analysis of circumstellar/nuclear dust morphology requires direct access to the gas via spectral resolved studies of emission lines, requiring at least a spectral resolution of 2 500. d) To routinely deliver images at the required sensitivity, the number of telescopes in determinant, with 6 telescopes being favored. e) The factorial increase in the number of closure phases and visibilities, gained in a single observation, makes massive surveys of parameters and related science for the first time possible. f) High dynamic range imaging and very high dynamic range differential closure phase are possible allowing the study of debris disks and characterization of pegasides. g) Spectro-imaging in the near-infrared is highly complementary to ALMA, adaptive optics and interferometric imaging in the thermal infrared. [less ▲]

Detailed reference viewed: 108 (13 ULg)
Full Text
See detailPhase closure image reconstruction for future VLTI instrumentation
Filho, Mercedes E; Renard, Stephanie; Garcia, Paulo et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

Classically, optical and near-infrared interferometry have relied on closure phase techniques to produce images. Such techniques allow us to achieve modest dynamic ranges. In order to test the feasibility ... [more ▼]

Classically, optical and near-infrared interferometry have relied on closure phase techniques to produce images. Such techniques allow us to achieve modest dynamic ranges. In order to test the feasibility of next generation optical interferometers in the context of the VLTI-spectro-imager (VSI), we have embarked on a study of image reconstruction and analysis. Our main aim was to test the influence of the number of telescopes, observing nights and distribution of the visibility points on the quality of the reconstructed images. Our results show that observations using six Auxiliary Telescopes (ATs) during one complete night yield the best results in general and is critical in most science cases; the number of telescopes is the determining factor in the image reconstruction outcome. In terms of imaging capabilities, an optical, six telescope VLTI-type configuration and ~200 meter baseline will achieve 4 mas spatial resolution, which is comparable to ALMA and almost 50 times better than JWST will achieve at 2.2 microns. Our results show that such an instrument will be capable of imaging, with unprecedented detail, a plethora of sources, ranging from complex stellar surfaces to microlensing events. [less ▲]

Detailed reference viewed: 62 (4 ULg)
Full Text
See detailProspects for near-infrared characterisation of hot Jupiters with the VLTI Spectro-Imager (VSI)
Renard, Stéphanie; Absil, Olivier ULg; Berger, J.-P. et al

in Schöller, Markus; Danchi, William; Delplancke, Françoise (Eds.) Optical and Infrared Interferometry (2008, July 01)

In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular ... [more ▼]

In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular resolution to resolve nearby hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account fundamental noises, we simulate closure phase measurements of several extrasolar systems using four 8-m telescopes at the VLT and a low spectral resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an input. Standard chi[SUP]2[/SUP]-fitting methods are then used to reconstruct planetary spectra from the simulated data. These simulations show that low-resolution spectra in the H and K bands can be retrieved with a good fidelity for half a dozen targets in a reasonable observing time (about 10 hours, spread over a few nights). Such observations would strongly constrain the planetary temperature and albedo, the energy redistribution mechanisms, as well as the chemical composition of their atmospheres. Systematic errors, not included in our simulations, could be a serious limitation to these performance estimations. The use of integrated optics is however expected to provide the required instrumental stability (around 10[SUP]-4[/SUP] on the closure phase) to enable the first thorough characterisation of extrasolar planetary emission spectra in the near-infrared. [less ▲]

Detailed reference viewed: 12 (0 ULg)