References of "Relic, Biserka"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDifferential signalling through ALK-1 and ALK-5 regulates leptin expression in Mesenchymal Stem Cells
Zeddou, M.; RELIC, Biserka ULg; MALAISE, Olivier ULg et al

in Stem Cells & Development (2012), 21(11), 1948-54

Leptin plays a central role in maintaining energy balance, with multiple other systemic effects. Despite leptin importance in peripheral regulation of mesenchymal stem cells (MSC) differentiation, little ... [more ▼]

Leptin plays a central role in maintaining energy balance, with multiple other systemic effects. Despite leptin importance in peripheral regulation of mesenchymal stem cells (MSC) differentiation, little is known on its expression mechanism. Leptin is often described as adipokine, while it is expressed by other cell types. We have recently shown an in vitro leptin expression, enhanced by glucocorticoids in synovial fibroblasts. Here, we investigated leptin expression in MSC from bone marrow (BM-MSC), cord matrix (UMSC), and primary and dedifferentiated chondrocytes (DCH). Results showed that BM-MSC, but not UMSC, expressed leptin that was strongly enhanced by glucocorticoids. Interestingly, chondrocytes gained leptin expression progressively with dedifferentiation. This dedifferentiation was correlated with downregulation of ALK-5 expression, Smad2 phosphorylation (p-Smad2), and gain of ALK-1 expression and Smad1/5 phosphorylation (p-Smad1/5). TGF-β1 was shown to signal via ALK-5-Smad2/3 and/or ALK-1-Smad1/5 pathways. In BM-MSC, TGF-β1 increased p-Smad2 expression and markedly inhibited endogenous- and glucocorticoidinduced leptin expression, while ALK-5 inhibitor (SB431542) induced and restored this expression. In addition, both prednisolone and <br />SB431542 increased p-Smad1/5 expression. These results suggested ALK-5-Smad2 pathway as inhibitor of leptin expression, while ALK-1-Smad1/5 as activator. Indeed, Smad1 expression silencing induced leptin expression inhibition. Furthermore, prednisolone enhanced the expression of TGF-βRII while decreasing p-Smad2 in BM-MSC and SVF but not in UMSC. In vitro differentiation revealed differential osteogenic potential in SVF, BM-MSC and UMSC that correlates to their leptin expression potential. Our results suggest that ALK-1/ALK-5 balance regulates leptin expression in MSC. It also underlines UMSC as leptin non-producer MSC for cell therapy protocols where leptin expression is not suitable. [less ▲]

Detailed reference viewed: 48 (13 ULg)
Full Text
Peer Reviewed
See detailThe umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood.
Zeddou, Mustapha ULg; Briquet, Alexandra ULg; Relic, Biserka ULg et al

in Cell Biology International (2010), 34(7), 693-701

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these ... [more ▼]

Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+-depleted MNC and CD133+- or LNGFR+-enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non-invasive and abundant source of MSC. [less ▲]

Detailed reference viewed: 66 (16 ULg)
Full Text
Peer Reviewed
See detailAlone or in concert with glucocorticoids, genistein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts
Relic, Biserka ULg; Zeddou, Mustapha ULg; Desoroux, Aline ULg et al

in Laboratory Investigation : Journal of Technical Methods & Pathology (2009), 89(7), 811-822

It was shown recently that synovial fibroblast transformation into adipocytes reduced the expression of interleukin-6 (IL-6) and IL-8. However, the synovial fibroblast adipogenesis was inhibited in ... [more ▼]

It was shown recently that synovial fibroblast transformation into adipocytes reduced the expression of interleukin-6 (IL-6) and IL-8. However, the synovial fibroblast adipogenesis was inhibited in inflammatory conditions induced by the tumor necrosis factor-alpha (TNF-alpha). Furthermore, adipogenesis is often accompanied by leptin production, a proinflammatory adipokine in rheumatic diseases. In this study, we tested the phytohormone genistein for adipogenic and anti-inflammatory properties on human synovial fibroblasts. Results showed that genistein was able to transform synovial fibroblasts into adipocytes that expressed perilipin-A and produced adiponectin, but not leptin. Furthermore, genistein enhanced glucocorticoid-mediated synovial fibroblast adipogenesis and, in parallel, downregulated glucocorticoid-induced leptin and leptin receptor. Endogenous and TNF-alpha-induced expressions of IL-6, IL-8, p38, p65 and C/EBP-beta were also downregulated by genistein, showing its anti-inflammatory properties. Peroxisome proliferator- activated receptor-gamma (PPAR-gamma) agonist, rosiglitazone, had a synergic effect on genistein-induced whereas the non-active tyrosine kinase inhibitor, daidzein, had a significantly inferior adipogenic activity than genistein. The Janus kinase-2 tyrosine kinase inhibitor, AG 490, mimicked the anti-leptin effect of genistein. These results showed that genistein-induced adipogenesis involves PPAR-gamma induction and tyrosine kinase inhibition. In conclusion, genistein, alone or coupled with glucocorticoids, have both adipogenic and anti-inflammatory effects on synovial fibroblasts. [less ▲]

Detailed reference viewed: 84 (20 ULg)
Full Text
Peer Reviewed
See detailPeroxisome proliferator-activated receptor-gamma1 is dephosphorylated and degraded during BAY 11-7085-induced synovial fibroblast apoptosis
Relic, Biserka ULg; Benoit, Valerie; Franchimont, Nathalie et al

in Journal of Biological Chemistry (2006), 281(32), 597-604

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a central role in whole body metabolism by regulating adipocyte differentiation and energy storage. Recently, however, PPAR-gamma has ... [more ▼]

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a central role in whole body metabolism by regulating adipocyte differentiation and energy storage. Recently, however, PPAR-gamma has also been demonstrated to affect proliferation, differentiation, and apoptosis of different cell types. As we have previously shown that BAY 11-7085-induced synovial fibroblast apoptosis is prevented by PPAR-gamma agonist 15d-PGJ2; the expression of PPAR-gamma in these cells was studied. Both PPAR-gamma1 and PPAR-gamma2 isoforms were cloned from synovial fibroblast RNA, but only PPAR-gamma1 was detected by Western blot, showing constitutive nuclear expression. Within minutes of BAY 11-7085 treatment, a PPAR-gamma1-specific band was shifted into a form of higher mobility, suggesting dephosphorylation, as confirmed by phosphatase treatment of cell extracts. Of interest, BAY 11-7085-induced PPAR-gamma1 dephosphorylation was followed by PARP and caspase-8 cleavage as well as by PPAR-gamma1 protein degradation. PPAR-gamma1 dephosphorylation was followed by the loss of PPAR-DNA binding activity ubiquitously present in synovial fibroblast nuclear extracts. Unlike the phosphorylated form, dephosphorylated PPAR-gamma1 was found in insoluble membrane cell fraction and was not ubiquitinated before degradation. PPAR-gamma1 dephosphorylation coincided with ERK1/2 phosphorylation that accompanies BAY 11-7085-induced synovial fibroblasts apoptosis. 15d-PGJ2, PGD2, and partially UO126, down-regulated ERK1/2 phosphorylation, protected cells from BAY 11-7085-induced apoptosis, and reversed both PPAR-gamma dephosphorylation and degradation. Furthermore, PPAR-gamma antagonist BADGE induced PPAR-gamma1 degradation, ERK1/2 phosphorylation, and synovial fibroblasts apoptosis. The results presented suggest an anti-apoptotic role for PPAR-gamma1 in synovial fibroblasts. Since apoptotic marker PARP is cleaved after PPAR-gamma1 dephosphorylation but before PPAR-gamma1 degradation, dephosphorylation event might be enough to mediate BAY 11-7085-induced apoptosis in synovial fibroblasts. [less ▲]

Detailed reference viewed: 10 (3 ULg)
Full Text
Peer Reviewed
See detailInterleukin-6 receptor shedding is enhanced by interleukin-1beta and tumor necrosis factor alpha and is partially mediated by tumor necrosis factor alpha-converting enzyme in osteoblast-like cells.
Franchimont, Nathalie; Lambert, Cécile ULg; Huynen, Pascale ULg et al

in Arthritis and Rheumatism (2005), 52(1), 84-93

OBJECTIVE: Interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) activation of gp130 represents an alternative pathway for osteoclast development in inflammatory conditions. The goal of the present ... [more ▼]

OBJECTIVE: Interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) activation of gp130 represents an alternative pathway for osteoclast development in inflammatory conditions. The goal of the present study was to investigate changes in sIL-6R levels in response to the inflammatory cytokines IL-1beta and tumor necrosis factor alpha (TNFalpha) and to determine the role of TNFalpha-converting enzyme (TACE) in this process. METHODS: Levels of sIL-6R in the culture media of MG63 and SAOS-2 osteoblast-like cell lines after exposure to various agents were determined by immunoassay. TACE protein levels were measured by Western immunoblotting. Cells were transfected with small interfering RNA (siRNA) or with an expression plasmid for IL-6R and TACE to determine the potential involvement of TACE in IL-6R shedding. RESULTS: IL-1beta and TNFalpha increased the levels of sIL-6R in the culture media of MG63 osteoblast-like cells. This effect was not influenced by cycloheximide or 5,6-dichlorobenzimidazole riboside but was markedly inhibited by the calcium chelator EGTA and by the TACE and matrix metalloproteinase inhibitor hydroxamate (Ru36156). IL-1beta and TNFalpha had no influence on the alternatively spliced form of IL-6R RNA. Levels of sIL-6R were reduced when MG63 cells were transiently transfected with TACE siRNA. Transfection of SAOS-2 cells with expression plasmids for IL-6R and TACE produced a dose-dependent increase in sIL-6R levels. CONCLUSION: IL-1beta- and TNFalpha-mediated induction of IL-6R shedding in osteoblast-like cells is at least partly dependent on TACE activation. [less ▲]

Detailed reference viewed: 69 (2 ULg)
Full Text
Peer Reviewed
See detailRegulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2
Benoit, Valérie; Relic, Biserka ULg; de Leval, Laurence ULg et al

in Oncogene (2004), 23(8), 1631-1635

The oncoprotein HER-2/neu is a prosurvival factor and its overexpression has been correlated with adverse prognosis in breast cancers. High levels of the cyclooxygenase-2 (COX-2), a proinflammatory and ... [more ▼]

The oncoprotein HER-2/neu is a prosurvival factor and its overexpression has been correlated with adverse prognosis in breast cancers. High levels of the cyclooxygenase-2 (COX-2), a proinflammatory and antiapoptotic enzyme, were detected in HER-2-positive tumors and this observation was linked to an HER-2-mediated induction of COX-2 gene transcription. Here, we report that COX-2 expression, and synthesis of its major enzymatic product, PGE2, leads in turn to an enhanced HER-2 expression. Moreover, COX-2 enzymatic inhibition dramatically reduced HER-2 protein levels, efficiently increased the cancer cells sensitility to chemotherapeutic treatment and acted in synergy with HER-2 inhibitor, trastuzumab. Therefore, we propose an original model where HER-2 and COX-2 transcriptionally regulate each other in a positive loop. [less ▲]

Detailed reference viewed: 60 (7 ULg)
Full Text
Peer Reviewed
See detail15-deoxy-delta12,14-prostaglandin J2 inhibits Bay 11-7085-induced sustained extracellular signal-regulated kinase phosphorylation and apoptosis in human articular chondrocytes and synovial fibroblasts
Relic, Biserka ULg; Benoit, Valerie; Franchimont, Nathalie et al

in Journal of Biological Chemistry (2004), 279(21), 399-403

We have previously shown that nuclear factor-kappaB inhibition by adenovirus expressing mutated IkappaB-alpha or by proteasome inhibitor increases human articular chondrocytes sensibility to apoptosis ... [more ▼]

We have previously shown that nuclear factor-kappaB inhibition by adenovirus expressing mutated IkappaB-alpha or by proteasome inhibitor increases human articular chondrocytes sensibility to apoptosis. Moreover, the nuclear factor-kappaB inhibitor BAY11-7085, a potent anti-inflammatory drug in rat adjuvant arthritis, is itself a proapoptotic agent for chondrocytes. In this work, we show that BAY 11-7085 but not the proteasome inhibitor MG-132 induced a rapid and sustained phosphorylation of extracellular signal-regulated kinases (ERK1/2) in human articular chondrocytes. The level of ERK1/2 phosphorylation correlated with BAY 11-7085 concentration and chondrocyte apoptosis. 15-Deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and its precursor prostaglandin (PG) D2 but not PGE2 and PGF2alpha rescued chondrocytes from BAY 11-7085-induced apoptosis. 15d-PGJ2 markedly inhibited BAY 11-7085-induced phosphorylation of ERK1/2. BAY 11-7085 also induced ERK1/2 phosphorylation and apoptosis in human synovial fibroblasts, and these reactions were down-regulated by 15d-PGJ2. Further analysis in synovial fibroblasts showed that only molecules that suppressed BAY 11-7085-induced phosphorylation of ERK1/2 (i.e. 15d-PGJ2, PGD2, and to a lesser extent, MEK1/2 inhibitor UO126, but not prostaglandins E2 and F2alpha or peroxisome proliferator-activated receptor-gamma agonist ciglitazone) were able protect cells from apoptosis. These results suggested that the antiapoptotic effect of 15d-PGJ2 on chondrocytes and synovial fibroblasts might involve inhibition of ERK1/2 phosphorylation. [less ▲]

Detailed reference viewed: 14 (2 ULg)
See detailInterleukin-1beta and tumor necrosis factor-alpha enhance the shedding of Interleukin-6 receptor in osteoblastic cells: Involvement of tumor necrosis factor-alpha converting enzyme
Franchimont, N. M.; Lambert, Cecile; Ribbens, Clio ULg et al

in Arthritis and Rheumatism (2003, September), 48(9, Suppl. S), 482

Detailed reference viewed: 17 (2 ULg)
Full Text
Peer Reviewed
See detailNF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells
Bentires-Alj, Mohamed; Barbu, Véronique; Fillet, Marianne ULg et al

in Oncogene (2003), 22

The ubiquitous NF-kappaB transcription factor has been reported to inhibit apoptosis and to induce drug resistance in cancer cells. Drug resistance is the major reason for cancer therapy failure and ... [more ▼]

The ubiquitous NF-kappaB transcription factor has been reported to inhibit apoptosis and to induce drug resistance in cancer cells. Drug resistance is the major reason for cancer therapy failure and neoplastic cells often develop multiple mechanisms of drug resistance during tumor progression. We observed that NF-kappaB or P-glycoprotein inhibition in the HCT15 colon cancer cells led to increased apoptotic cell death in response to daunomycin treatment. Interestingly, NF-kappaB inhibition through transfection of a plasmid coding for a mutated IkappaB-alpha inhibitor increased daunomycin cell uptake. Indeed, the inhibition of NF-kappaB reduced mdr1 mRNA and P-glycoprotein expression in HCT15 cells. We identified a consensus NF-kappaB binding site in the first intron of the human mdr1 gene and demonstrated that NF-kappaB complexes could bind with this intronic site. Moreover, NF-kappaB transactivates an mdr1 promoter luciferase construct. Our data thus demonstrate a role for NF-kappaB in the regulation of the mdr1 gene expression in cancer cells and in drug resistance. [less ▲]

Detailed reference viewed: 84 (9 ULg)
Full Text
Peer Reviewed
See detailTNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB
Relic, Biserka ULg; Bentires-Alj, Mohamed; Ribbens, Clio ULg et al

in Laboratory Investigation : Journal of Technical Methods & Pathology (2002), 82(12), 1661-1672

TNF-alpha plays a key role in rheumatoid arthritis, but its effect on chondrocyte survival is still conflicting. In the present study, we tested how TNF-alpha influences chondrocyte survival in response ... [more ▼]

TNF-alpha plays a key role in rheumatoid arthritis, but its effect on chondrocyte survival is still conflicting. In the present study, we tested how TNF-alpha influences chondrocyte survival in response to nitric oxide (NO)-related apoptotic signals, which are abundant during rheumatoid arthritis. Human primary articular chondrocytes or cartilage explants were pretreated with TNF-alpha for 24 hours and then treated with the proapoptotic NO donor sodium-nitro-prusside (SNP) for an additional 24 hours. TNF-alpha pretreatment markedly protected chondrocytes from SNP-induced cell death. Preincubation of chondrocytes with TNF-alpha inhibited both SNP-induced high-molecular weight DNA fragmentation and annexin V-FITC binding. Of interest, TNF-alpha induced persistent nuclear factor-kappaB (NF-kappaB)-DNA binding activity even in the presence of SNP, mirroring apoptosis protection effects. Both the TNF-alpha antiapoptotic effect and NF-kappaB-DNA binding activity were significantly inhibited by NF-kappaB inhibitors, Bay 11-7085, MG-132, and adenovirus-expressing mutated IkappaB-alpha. Phosphatidylinositol-3 kinase inhibitor LY 294002 also markedly inhibited the antiapoptotic effect of TNF-alpha. In primary chondrocytes, TNF-alpha induced expression of the antiapoptotic protein Cox-2, which persisted in the presence of SNP, and a specific Cox-2 inhibitor significantly blocked the TNF-alpha protective effect. We therefore conclude that TNF-alpha-mediated protection of chondrocytes from NO-induced apoptosis acts through NF-kappaB and requires Cox-2 activity. [less ▲]

Detailed reference viewed: 27 (0 ULg)