References of "Rauchs, Géraldine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSleep contributes to the strengthening of some memories over others, depending on hippocampal activity at learning.
Rauchs, Géraldine; Feyers, Dorothée ULg; Landeau, Brigitte et al

in Journal of Neuroscience (2011), 31(7), 2563-2568

Memory consolidation benefits from sleep. Besides strengthening some memory traces, another crucial, albeit overlooked, function of memory is also to erase irrelevant information. Directed forgetting is ... [more ▼]

Memory consolidation benefits from sleep. Besides strengthening some memory traces, another crucial, albeit overlooked, function of memory is also to erase irrelevant information. Directed forgetting is an experimental approach consisting in presenting “to be remembered” and “to be forgotten” information, that allows selectively decreasing or increasing the strength of individual memory traces according to the instruction provided at learning. This paradigm was used in combination with fMRI to determine, in Humans, what specifically triggers at encoding sleep-dependent compared to time-dependent consolidation. Our data indicate that relevant items which subjects strived to memorize are consolidated during sleep to a greater extend than items that participants did not intend to learn. This process appears to depend on a differential activation of the hippocampus at encoding, which acts as a signal for the offline reprocessing of relevant memories during post-learning sleep episodes. [less ▲]

Detailed reference viewed: 51 (12 ULg)
Peer Reviewed
See detailSleep-dependent consolidation of declarative memories is triggered by hippocampal activation at encoding
Collette, Fabienne ULg; Rauchs, Géraldine; Feyers, Dorothée ULg et al

in Proceedings of Annul Meeting of the Belgian Association for Psychological Sciences (2010, May 28)

Detailed reference viewed: 9 (1 ULg)
Full Text
Peer Reviewed
See detailSleep-dependent consolidation of declarative memories is triggered by hippocampal activation at encoding
Collette, Fabienne ULg; Rauchs, Géraldine; Feyers, Dorothée ULg et al

in Proceedings of the Annual Meeting of th Belgian Association for Psychological Science (2010)

Detailed reference viewed: 8 (0 ULg)
Full Text
Peer Reviewed
See detailEvidence for a role of sleep in forgetting of irrelevant information
Collette, Fabienne ULg; Rauchs, Géraldine; Landeau, Brigitte et al

in NeuroImage (2009, June), 47(Suppl 1), 328-

Detailed reference viewed: 14 (1 ULg)
Full Text
Peer Reviewed
See detailThe role of sleep in motor adaptation consolidation assessed by fMRI
Albouy, Geneviève ULg; Vandewalle, Gilles ULg; Gais, Steffen et al

in Journal of Sleep Research (2008), 17(Suppl. 1),

Detailed reference viewed: 8 (3 ULg)
Full Text
Peer Reviewed
See detailSpontaneous neural activity during human slow wave sleep.
Dang Vu, Thien Thanh ULg; Schabus, Manuel ULg; Desseilles, Martin ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2008), 105(39), 15160-5

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the ... [more ▼]

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions. [less ▲]

Detailed reference viewed: 132 (27 ULg)
Full Text
Peer Reviewed
See detailThe Role of Sleep in Motor Memory Consolidation assessed by fMRI and MEG
Albouy, Geneviève ULg; Sterpenich, Virginie ULg; Darsaud, Annabelle et al

in Journal of Neuroscience (2007), 27(Suppl. 1),

Detailed reference viewed: 27 (2 ULg)
Full Text
Peer Reviewed
See detailBrain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem
Vandewalle, Gilles ULg; Schmidt, Christina ULg; Albouy, Geneviève ULg et al

in PLoS ONE (2007), 2(11), 1247

BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by ... [more ▼]

BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (10(13)ph/cm(2)/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function. [less ▲]

Detailed reference viewed: 48 (0 ULg)
Full Text
Peer Reviewed
See detailSleep-related hippocampo-cortical interplay during emotional memory recollection.
Sterpenich, Virginie ULg; Albouy, Geneviève ULg; Boly, Mélanie ULg et al

in PLoS Biology (2007), 5(11), 282

Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative ... [more ▼]

Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical network, which would keep track of emotional information despite sleep deprivation. [less ▲]

Detailed reference viewed: 87 (8 ULg)
Full Text
Peer Reviewed
See detailSleep after spatial learning promotes covert reorganization of brain activity
Orban, Pierre ULg; Rauchs, Géraldine; Balteau, Evelyne ULg et al

in Proceedings of the National Academy of Sciences of the United States of America (2006), 103(18), 7124-7129

Sleep promotes the integration of recently acquired spatial memories into cerebral networks for the long term. In this study, we examined how sleep deprivation hinders this consolidation process. Using ... [more ▼]

Sleep promotes the integration of recently acquired spatial memories into cerebral networks for the long term. In this study, we examined how sleep deprivation hinders this consolidation process. Using functional MRI, we mapped regional cerebral activity during place-finding navigation in a virtual town, immediately after learning and 3 days later, in subjects either allowed regular sleep (RS) or totally sleep-deprived (TSD) on the first posttraining night. At immediate and delayed retrieval, place-finding navigation elicited increased brain activity in an extended hippocamponeocortical network in both RS and TSD subjects. Behavioral performance was equivalent between groups. However, striatal navigation-related activity increased more at delayed retrieval in RS than in TSD subjects. Furthermore, correlations between striatal response and behavioral performance, as well as functional connectivity between the striatum and the hippocampus, were modulated by posttraining sleep. These data suggest that brain activity is restructured during sleep in such a way that navigation in the virtual environment, initially related to a hippocampus-dependent spatial strategy, becomes progressively contingent in part on a response-based strategy mediated by the striatum. Both neural strategies eventually relate to equivalent performance levels, indicating that covert reorganization of brain patterns underlying navigation after sleep is not necessarily accompanied by overt changes in behavior. [less ▲]

Detailed reference viewed: 18 (1 ULg)