References of "Raffalski, U"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUsing XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets
Barthlott; Schneider, M; Hase, F et al

in Atmospheric Measurement Techniques. Papers in Open Discussion (2014), 7

Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier–Transform InfraRed) spectrometers, spread worldwide, provide long-term data records of many ... [more ▼]

Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier–Transform InfraRed) spectrometers, spread worldwide, provide long-term data records of many atmospheric trace gases. We present a method that uses measured and modelled XCO2 for assessing the consistency of these data records. Our NDACC XCO2 retrieval setup is kept simple so that it can easily be adopted for any NDACC/FTIR-like measurement made since the late 1950s. By a comparison to coincident TCCON (Total Carbon Column Observing Network) measurements, we empirically demonstrate the useful quality of this NDACC XCO2 product (empirically obtained scatter between TCCON and NDACC is about 4‰ for daily mean as well as monthly mean comparisons and the bias is 25 ‰). As XCO2 model we developed and used a simple regression model fitted to CarbonTracker results and the Mauna Loa CO2 in-situ records. A comparison to TCCON data suggests an uncertainty of the model for monthly mean data of below 3 ‰. We apply the method to the NDACC/FTIR spectra that are used within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) and demonstrate that there is a good consistency for these globally representative set of spectra measured since 1996: the scatter between the modelled and measured XCO2 on a yearly time scale is only 3 ‰. [less ▲]

Detailed reference viewed: 18 (3 ULg)
Full Text
Peer Reviewed
See detailValidation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC
Kerzenmacher, T; Dils, B; Kumps, N et al

in Atmospheric Measurement Techniques (2012), 5

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de ... [more ▼]

Carbon monoxide (CO) is retrieved daily and globally from space-borne IASI radiance spectra using the Fast Optimal Retrievals on Layers for IASI (FORLI) software developed at the Université Libre de Bruxelles (ULB). The IASI CO total column product for 2008 from the most recent FORLI retrieval version (20100815) is evaluated using correlative CO profile products retrieved from groundbased solar absorption Fourier transform infrared (FTIR) observations at the following FTIR spectrometer sites from the Network for the Detection of Atmospheric Composition Change (NDACC): Ny-Alesund, Kiruna, Bremen, Jungfraujoch, Izana and Wollongong. In order to have good statistics for the comparisons, we included all IASI data from the same day, within a 100 km radius around the ground-based stations. The individual ground-based data were adjusted to the lowest altitude of the co-located IASI CO profiles. To account for the different vertical resolutions and sensitivities of the ground-based and satellite measurements, the averaging kernels associated with the various retrieved products have been used to properly smooth coincident data products. It has been found that the IASI CO total column products compare well on average with the co-located ground-based FTIR total columns at the selected NDACC sites and that there is no significant bias for the mean values at all stations. [less ▲]

Detailed reference viewed: 67 (0 ULg)
Full Text
Peer Reviewed
See detailObserved and simulated time evolution of HCl, ClONO2, and HF total column abundances
Kohlhepp, R; Ruhnke, R; Chipperfield, M P et al

in Atmospheric Chemistry and Physics (2012), 12(7), 3527--3556

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra ... [more ▼]

Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05°N and 77.82°S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1%yr-1. The models simulate an increase of HF of around 1%yr-1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere. [less ▲]

Detailed reference viewed: 70 (14 ULg)
Full Text
Peer Reviewed
See detailCarbon monoxide (CO) and ethane (C2H6) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model
Angelbratt, J.; Mellqvist, J.; Simpson, D. et al

in Atmospheric Chemistry and Physics (2011), 11(17), 9253--9269

Trends in the CO and C2H6 partial columns ~0–15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from ... [more ▼]

Trends in the CO and C2H6 partial columns ~0–15 km) have been estimated from four European ground-based solar FTIR (Fourier Transform InfraRed) stations for the 1996–2006 time period. The CO trends from the four stations Jungfraujoch, Zugspitze, Harestua and Kiruna have been estimated to −0.45 ± 0.16% yr−1, −1.00 ± 0.24% yr−1, −0.62 ± 0.19 % yr−1 and −0.61 ± 0.16% yr−1, respectively. The corresponding trends for C2H6 are −1.51 ± 0.23% yr−1, −2.11 ± 0.30% yr−1, −1.09 ± 0.25% yr−1 and −1.14 ± 0.18% yr−1. All trends are presented with their 2-σ confidence intervals. To find possible reasons for the CO trends, the global-scale EMEP MSC-W chemical transport model has been used in a series of sensitivity scenarios. It is shown that the trends are consistent with the combination of a 20% decrease in the anthropogenic CO emissions seen in Europe and North America during the 1996–2006 period and a 20% increase in the anthropogenic CO emissions in East Asia, during the same time period. The possible impacts of CH4 and biogenic volatile organic compounds (BVOCs) are also considered. The European and global-scale EMEP models have been evaluated against the measured CO and C2H6 partial columns from Jungfraujoch, Zugspitze, Bremen, Harestua, Kiruna and Ny-Ålesund. The European model reproduces, on average the measurements at the different sites fairly well and within 10–22% deviation for CO and 14–31% deviation for C2H6. Their seasonal amplitude is captured within 6–35% and 9–124% for CO and C2H6, respectively. However, 61–98% of the CO and C2H6 partial columns in the European model are shown to arise from the boundary conditions, making the global-scale model a more suitable alternative when modeling these two species. In the evaluation of the global model the average partial columns for 2006 are shown to be within 1–9% and 37–50% of the measurements for CO and C2H6, respectively. The global model sensitivity for assumptions made in this paper is also analyzed. [less ▲]

Detailed reference viewed: 39 (4 ULg)