References of "Quoilin, Sylvain"
     in
Bookmark and Share    
Peer Reviewed
See detailOrganic Rankine Cycles including fluid selection
Lemort, Vincent ULg; Declaye, Sébastien ULg; Quoilin, Sylvain ULg

in Handbook of Clean Energy Systems (in press)

An Organic Rankine Cycle (ORC) is similar to a steam Rankine cycle, except that the working fluid is not water but an organic compound, such as a refrigerant or a hydrocarbon, characterized by a lower ... [more ▼]

An Organic Rankine Cycle (ORC) is similar to a steam Rankine cycle, except that the working fluid is not water but an organic compound, such as a refrigerant or a hydrocarbon, characterized by a lower ebullition temperature than that of water. Hence lower temperature heat sources can be exploited such as solar energy, geothermal energy and waste heat recovery from many different processes. During the design phase of an ORC system, the selection of the working fluid must be conducted in parallel with the selection and the sizing of the components (mainly the expansion machine, the pump and the heat exchangers) and with the definition of the cycle architecture. This approach allows taking into consideration all technical constraints. Relevant properties of working fluids that should be considered during their selection are listed. Major characteristics of available displacement and turbo-expander technologies are described. The impact of the pump performance on the overall performance is discussed and strategies to increase the available NPSH are proposed. Finally, improved cycle architectures are introduced. Major applications of ORC systems are described: geothermal power plants, biomass CHP plants, waste heat recovery in industry, waste heat recovery on internal combustion engines and solar power plants. All these applications differ by the nature of the heat source and heat sink, the integration of the ORC with these sources and sinks, and the range of installed capacities. These differences yield specific designs, which are described. Performance achieved by systems in operation or prototypes are presented. [less ▲]

Detailed reference viewed: 403 (42 ULg)
Full Text
Peer Reviewed
See detailExperimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications
Desideri, Adriano ULg; Gusev, Sergei; Van den Broek, Martijn et al

in Energy (2016), 97

This contribution experimentally evaluates and compares the performance of an ORC (organic Rankine cycle) system for stationary bottoming WHR (waste heat recovery) application operating with two different ... [more ▼]

This contribution experimentally evaluates and compares the performance of an ORC (organic Rankine cycle) system for stationary bottoming WHR (waste heat recovery) application operating with two different working fluids, SES36 and R245fa. The test rig is a regenerative cycle equipped with a single screw expander modified from a standard compressor characterized by a nominal shaft power of 11 kW. A total of 36 and 43 steady-state points are collected for SES36 and R245fa respectively, over a wide range of operating conditions by changing the expander rotational speed, the pump frequency and the cooling condenser flow rate. The performances of the ORC components are individually evaluated. A maximum expander isentropic efficiency of 60% is reached using SES36 at 3000 rpm, and a value of 52% is reached with R245fa at 3000 rpm. However, for a given pressure ratio the expander output power is higher with R245fa than with SES36. The overall performance of the ORC unit are investigated in terms of first and second law efficiencies and net output power for the two fluids. The results experimentally demonstrate the correlation between the working fluid critical temperature and the ORC unit working characteristics for low temperature waste heat recovery applications. Open experimental data are provided for both fluids. [less ▲]

Detailed reference viewed: 14 (4 ULg)
Full Text
Peer Reviewed
See detailReal-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control
Hernandez Naranjo, Jairo Andres ULg; Desideri, Adriano ULg; Ionescu, Clara et al

in Energies (2016), 9

In this paper, the optimal operation of a stationary sub-critical 11kWel organic Rankine cycle (ORC) unit for waste heat recovery (WHR) applications is investigated, both in terms of energy production and ... [more ▼]

In this paper, the optimal operation of a stationary sub-critical 11kWel organic Rankine cycle (ORC) unit for waste heat recovery (WHR) applications is investigated, both in terms of energy production and safety conditions. Simulation results of a validated dynamic model of the ORC power unit are used to derive a correlation for the evaporating temperature, which maximizes the power generation for a range of operating conditions. This idea is further extended using a perturbation-based extremum seeking (ES) algorithm to identify online the optimal evaporating temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive control (EPSAC) approach to constrained model predictive control (MPC). Since it uses input/output models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial applications. The performance of the proposed control strategy is compared to PID-like schemes. Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to the boundary conditions where power generation is maximized. [less ▲]

Detailed reference viewed: 15 (3 ULg)
Full Text
Peer Reviewed
See detailComparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language
Desideri, Adriano ULg; Dechesne, Bertrand ULg; Wronski, Jorrit et al

in energies (2016)

When modeling low capacity energy systems, such as a small size (5–150kWel) organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the ... [more ▼]

When modeling low capacity energy systems, such as a small size (5–150kWel) organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, the finite volume (FV) and the moving boundary (MB) approaches are the most widely used. The two models are developed and included in the open-source ThermoCycle Modelica library. In this contribution, a comparison between the two approaches is presented. An integrity and accuracy test is designed to evaluate the performance of the FV and MB models during transient conditions. In order to analyze how the two modeling approaches perform when integrated at a system level, two organic Rankine cycle (ORC) system models are built using the FV and the MB evaporator model, and their responses are compared against experimental data collected on an 11kWel ORC power unit. Additionally, the effect of the void fraction value in the MB evaporator model and of the number of control volumes (CVs) in the FV one is investigated. The results allow drawing general guidelines for the development of heat exchanger dynamic models involving two-phase flows. [less ▲]

Detailed reference viewed: 14 (3 ULg)
Peer Reviewed
See detailTechno-economic optimization of isolate micro-grids including PV and Li-Ion Batteries in the Bolivian context
Balderrama, Sergio; Canedo, Walter; Lemort, Vincent ULg et al

in Proceedings of ECOS 2016 - the 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (2016)

In Bolivia 44 % of the people living in rural areas do not have reliable access to electric energy. This is due to a combination of unfavourable geography and the lack of economic resources to achieve the ... [more ▼]

In Bolivia 44 % of the people living in rural areas do not have reliable access to electric energy. This is due to a combination of unfavourable geography and the lack of economic resources to achieve the necessary infrastructure. In this context, the main goal of this study is to evaluate the economic and technical feasibility of micro-grids including photovoltaic panels (PV), batteries systems and the possible inclusion of diesel generators for off-grid applications. To that aim, a linear optimization model was developed within the Pyomo framework in order to optimize both the installed capacities and dispatch of the PV, battery and diesel sub-systems. The defined objective function is the net present cost. The exogenous inputs of the optimization are the typical demand and solar irradiation of a region of Bolivia in order to achieve results close to real Bolivian systems. Results indicate that due to the high levels of subvention to hydrocarbons, the PV and Li-Ion technology are not yet competitive with a diesel generator for the electrification of rural areas. On the other hand a sensitivity analysis is performed and proves that if the government decide to stop part of the subvention or shared it between conventional and non-conventional sources, the PV becomes competitive and the Li-Ion batteries enter the market around 2020. [less ▲]

Detailed reference viewed: 28 (4 ULg)
Peer Reviewed
See detailEconomic assessment of energy storage for load shifting in Positive Energy Building
Dumont, Olivier ULg; Carmo, carolina; Georges, Emeline ULg et al

Conference (2016)

Detailed reference viewed: 38 (5 ULg)
Full Text
Peer Reviewed
See detailEvaluation of simplified flexibility evaluation tools using a unit commitment model
Quoilin, Sylvain ULg; Nijs, Wouter; Hidalgo, Ignacio et al

in IEEE Digital Library (2015, December)

Different tools and methods have been proposed in the literature to assess the required flexibility resources and needs in a particular grid or geographical area. However, few of them are readily usable ... [more ▼]

Different tools and methods have been proposed in the literature to assess the required flexibility resources and needs in a particular grid or geographical area. However, few of them are readily usable in long term energy planning models because they require small time steps and detailed data. In this paper, two candidate methods to address the flexibility issues in such models are evaluated. A unit commitment model developed at the JRC, DispaSET 2.0, is used as a test case for the different simplified flexibility assessment tools. The modelled geographical area is Belgium, using historical data for the demand and VRE curves and their day-ahead forecast. Different VRE penetration scenarios are simulated to evaluate the flexibility of the power system. The simplified assessment tools are then run with the same inputs. Results indicate significant discrepancies between the detailed Unit Commitment model and the simplified tools. The underlying reasons are described and suggestions are formulated to improve their accuracy. [less ▲]

Detailed reference viewed: 25 (7 ULg)
Full Text
Peer Reviewed
See detailImpact of model reduction on the dynamic simulation of a micro-scale concentrated solar power system integrated with a thermal storage
Dickes, Rémi ULg; Wéber, Noé ULg; Lemort, Vincent ULg et al

in Proceedings of the ISES Solar World Congress 2015 (2015, November)

Because of the intermittent nature of solar irradiances, micro-scale solar thermal power systems almost never operate in nominal operating conditions. They are characterized by strong transients and ... [more ▼]

Because of the intermittent nature of solar irradiances, micro-scale solar thermal power systems almost never operate in nominal operating conditions. They are characterized by strong transients and require robust, fast and accurate dynamic simulation tools to permit a proper evaluation of their performance. Model reduction, i.e. the simplification of detailed models, is an attractive method to improve the computational efficiency while simulating such systems. In this context, a µCSP plant featuring a solar field of parabolic troughs, a thermocline storage and a 5kWe power unit is investigated. Both the solar field and the thermocline storage are modeled with complex and simplified methods. The whole power plant is simulated under identical operating condition and deviations between the simulation results are analyzed. Benefits and limitations of the current modeling approach are assessed. Improvements for the modeling of the thermocline storage are identified, implemented and validated. The Modelica language is used as simulation tool and the models developed in this work are integrated in the open-source ThermoCycle library. [less ▲]

Detailed reference viewed: 84 (11 ULg)
Full Text
Peer Reviewed
See detailAnalysis and comparison of different modeling approaches for the simulation of a micro-scale organic Rankine cycle power plant
Dickes, Rémi ULg; Dumont, Olivier ULg; Legros, Arnaud ULg et al

in Proceedings of the 3rd International Seminar on ORC Power Systems (2015, October 12)

When simulating a system based on the organic Rankine cycle (ORC), different modeling methods can be used to predict its performance. Each method is characterized by advantages, limitations and a level of ... [more ▼]

When simulating a system based on the organic Rankine cycle (ORC), different modeling methods can be used to predict its performance. Each method is characterized by advantages, limitations and a level of complexity. This contribution aims to assess the impact of the modeling approach on the performance prediction of ORC systems. To this end, a 2.8 kWe ORC unit is investigated as case study. In this paper, the components of the test bench are modeled using different approaches of increasing complexity and each model is calibrated using experimental data from the test rig. The goodness of fit as well as the benefits and limitations of each modeling methods are analyzed and discussed. [less ▲]

Detailed reference viewed: 133 (23 ULg)
Peer Reviewed
See detailEffect and profitability of storage facilities within zonal pricing systems
Oprescu, Bogdan; Quoilin, Sylvain ULg; Zucker, Andreas

in Proceedings of the 10th Conference on Sustainable Development of Energy, Water and Environment Systems (2015, September)

The new European Objectives along with environmental concerns are leading the energy sector in a new phase where conventional generation plants are progressively replaced by renewable energy sources. This ... [more ▼]

The new European Objectives along with environmental concerns are leading the energy sector in a new phase where conventional generation plants are progressively replaced by renewable energy sources. This new paradigm raises concerns regarding the optimal generation mix and the management of the power transmission constraints. This study focuses on the case of Italy tosimulate the dispatch in its power system with DispaSET, a unit commitment and optimal dispatch model developed within the Joint Research Centre. It aims at evaluating the value of storage and of interconnections in different renewables penetration scenarios. [less ▲]

Detailed reference viewed: 14 (2 ULg)
Full Text
Peer Reviewed
See detailDesign, Modeling, and Performance Optimization of a Reversible Heat Pump/Organic Rankine Cycle System for Domestic Application
Quoilin, Sylvain ULg; Dumont, Olivier ULg; Harley Hansen, Kristian et al

in Journal of Engineering for Gas Turbines and Power (2015)

In this paper, an innovative system combining a heat pump (HP) and an organic Rankine cycle (ORC) process is proposed. This system is integrated with a solar roof, which is used as a thermal source to ... [more ▼]

In this paper, an innovative system combining a heat pump (HP) and an organic Rankine cycle (ORC) process is proposed. This system is integrated with a solar roof, which is used as a thermal source to provide heat in winter months (HP mode) and electricity in summer months (ORC mode) when an excess irradiation is available on the solar roof. The main advantage of the proposed unit is its similarity with a traditional HP: the HP/ORC unit only requires the addition of a pump and four-way valves compared to a simple HP, which can be achieved at a low cost. A methodology for the optimal sizing and design of the system is proposed, based on the optimization of both continuous parameters such as heat exchanger size or discrete variables such as working fluid. The methodology is based on yearly simulations, aimed at optimizing the system performance (the net yearly power generation) over its whole operating range instead of just nominal sizing operating conditions. The simulations allow evaluating the amount of thermal energy and electricity generated throughout the year, yielding a net electric power output of 3496 kWh throughout the year. [less ▲]

Detailed reference viewed: 50 (1 ULg)
Full Text
Peer Reviewed
See detailModel reduction for simulating the dynamic behavior of parabolic troughs and a thermocline energy storage in a micro-solar power unit
Dickes, Rémi ULg; Desideri, Adriano ULg; Lemort, Vincent ULg et al

in Proceedings of ECOS 2015 (2015, July)

Micro-scale concentrated solar power plants are characterized by strong transients and mostly operate in off-design working conditions. Both the sizing and the control of these systems are key challenges ... [more ▼]

Micro-scale concentrated solar power plants are characterized by strong transients and mostly operate in off-design working conditions. Both the sizing and the control of these systems are key challenges whose optimization requires powerful dynamic modeling tools. In this context, a system featuring a solar field of parabolic troughs, a thermocline thermal energy storage and a 5kWe organic Rankine cycle (ORC) power unit is modeled in the Modelica language. Model reduction methods applied to the solar field and the thermal storage are investigated and analyzed to improve the computational efficiency of the problem. Each model is described and integrated in the open-source ThermoCycle library. Results of simulation under identical operating conditions are compared and the benefits and limitations of model reduction are assessed. [less ▲]

Detailed reference viewed: 127 (18 ULg)
Full Text
Peer Reviewed
See detailSemi-empirical correlation to model heat losses along solar parabolic trough collectors
Dickes, Rémi ULg; Lemort, Vincent ULg; Quoilin, Sylvain ULg

in Proceedings of ECOS 2015 (2015, July)

Solar thermal power plants convert sunshine energy into useful heat and electricity by means of solar collectors and a thermodynamic cycle. Among the different solar collector technologies, parabolic ... [more ▼]

Solar thermal power plants convert sunshine energy into useful heat and electricity by means of solar collectors and a thermodynamic cycle. Among the different solar collector technologies, parabolic troughs are nowadays the most widespread together with solar towers. In order to improve the computation speed required to simulate the temperature profile along solar parabolic trough collectors, a correlation estimating the effective heat losses of the receiver is an essential tool. However, the relations found in the literature lack accuracy and do not translate effectively the effects of the operating conditions in all cases. In this work, an alternative correlation is proposed and calibrated with the results of a deterministic model. Better fitting performance is demonstrated when compared to the prediction of the pre-existing correlations. The benefits and limitations of the new correlation are finally assessed. [less ▲]

Detailed reference viewed: 87 (14 ULg)
Full Text
Peer Reviewed
See detailDynamic modeling of thermal systems using a semi-empirical approach and the ThermoCycle Modelica Library
Altés Buch, Queralt ULg; Dickes, Rémi ULg; Desideri, Adriano ULg et al

in Proceedings of the 28th International Conference on Efficiency, Costs, Optimization and Simulation of Energy Systems (2015, June)

This paper proposes an innovative approach for the dynamic modeling of heat exchangers without phase transitions. The proposed thermo-flow model is an alternative to the traditional 1D finite-volumes ... [more ▼]

This paper proposes an innovative approach for the dynamic modeling of heat exchangers without phase transitions. The proposed thermo-flow model is an alternative to the traditional 1D finite-volumes approach and relies on a lumped thermal mass approach to model transient responses. The heat transfer is modeled by the well-known Logarithmic Mean Temperature Difference approach, which is modified to ensure robustness during all possible transient conditions. The lumped parameter models are validated with references models and tested within a Concentrating Solar Power plant model. Results indicate that the developed lumped models are robust and computationally efficient, ensuring the convergence of the Newton Solver. They are significantly faster (~10-fold) than the traditional finite volume models, although a more extensive comparisons would be needed to confirm this figure. They are well suited to be integrated in larger system models, but are not appropriate for the simulation of detailed thermo-flow phenomena. [less ▲]

Detailed reference viewed: 129 (11 ULg)
Full Text
Peer Reviewed
See detailImportance of the reconciliation method to handle experimental data: application to a reversible heat pump / organic Rankine cycle unit integrated in a positive energy building
Dumont, Olivier ULg; Quoilin, Sylvain ULg; Lemort, Vincent ULg

Conference (2015, June)

Experimental data is often the result of long and costly experimentations. Many times, measurements are used directly without (or with few) analysis and treatment. This paper therefore presents a detailed ... [more ▼]

Experimental data is often the result of long and costly experimentations. Many times, measurements are used directly without (or with few) analysis and treatment. This paper therefore presents a detailed methodology to use steady-state measurements efficiently in the analysis of a thermodynamic cycle. The reconciliation method allows to correct each measurement as little as possible, taking its accuracy into account, in order to satisfy all constraints and to evaluate the most probable physical state. The reconciliation method should be used for multiple reasons. First, this method allows to close energy and mass balances exactly, which is needed for predictive models. Also, it allows determining some unknowns that are not or that cannot be measured precisely. Furthermore, it fully exploits the collected measurements with redundancy and it allows to know which sensor should be checked or replaced if necessary. An application of this method is presented in the case of a reversible HP/ORC unit. This unit is a modified heat pump which is able to work as an organic Rankine cycle by reversing its cycle. Combined with a passive house comprising a solar roof and a ground heat exchanger, it allows to get a plus energy house. In this study case, the oil mass fraction is not measured despite of its strong influence on the results. The reconciliation method allows to evaluate it. The efficiency of this method is proven by comparing the error on the outputs of steady-state models of compressor and exchangers. An example is given with the prediction of the pinch-point of an evaporator. In this case, the normalized root mean square deviation (NRMSD) is decreased from 14.3 % to 4.1 % when using the reconciliation method. This paper proves the efficiency of the method and also that the method should be considered more often when dealing with experimentation. [less ▲]

Detailed reference viewed: 73 (11 ULg)
Full Text
Peer Reviewed
See detailExperimental investigation of a reversible heat pump / organic Rankine cycle unit designed to be coupled with a passive house (Net Zero Energy Building)
Dumont, Olivier ULg; Quoilin, Sylvain ULg; Lemort, Vincent ULg

in International Journal of Refrigeration (2015), 54

This paper presents an innovative reversible Heat Pump/Organic Rankine Cycle (HP/ORC) experimental unit designed to be coupled to a Net Zero Energy Building (connected to a 120 m2 thermal solar roof and a ... [more ▼]

This paper presents an innovative reversible Heat Pump/Organic Rankine Cycle (HP/ORC) experimental unit designed to be coupled to a Net Zero Energy Building (connected to a 120 m2 thermal solar roof and a ground heat exchanger). The system can operate in three different modes: an ORC mode to produce electricity when a large amount of heat is collected by the solar roof, a direct heating mode using exclusively the solar roof, and a HP mode for space heating during cold weather conditions. This paper describes a comprehensive experimental campaign carried out on a prototype unit using a modified HVAC scroll compressor (4 kWe). From the results, the technical feasibility of the system is demonstrated. A cycle efficiency of 4.2% is achieved in ORC mode (with condensation and evaporation temperature respectively of 25 C and 88 C) and a COP of 3.1 is obtained in HP mode (with condensation and evaporation temperature respectively of 61 C and 21 C). [less ▲]

Detailed reference viewed: 58 (2 ULg)
Full Text
Peer Reviewed
See detailA generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration
Bell, Ian; Quoilin, Sylvain ULg; Georges, Emeline ULg et al

in Applied Thermal Engineering (2015), 79

In this work, a novel and robust solution approach is presented that can be used to predict the steady-state thermal heat transfer rate for counterflow heat exchangers with any combination of single-phase ... [more ▼]

In this work, a novel and robust solution approach is presented that can be used to predict the steady-state thermal heat transfer rate for counterflow heat exchangers with any combination of single-phase and two-phase conditions within the heat exchanger. This methodology allows for multiple internal pinching points, as well as all permutations of subcooled liquid, two-phase and superheated vapor sections for the hot and cold fluids. A residual function based on the matching of the required and available thermal conductances in each section is derived, and Brent's method is then used to drive the residual to zero. Examples are presented for the application of this methodology to a water-heated n-Propane evaporator. The computational time required to execute the model for a simple case is on the order of one millisecond when the tabular interpolation methods of CoolProp are applied. Source code for the algorithm is provided in the Python programming language as an appendix. [less ▲]

Detailed reference viewed: 77 (6 ULg)