References of "Queloz, Didier"
     in
Bookmark and Share    
Full Text
See detailHD 97658 and its super-Earth: Spitzer transit analysis and seismic modeling of the host star
Van Grootel, Valérie ULg; Gillon, Michaël ULg; Valencia, Diana et al

Conference (2013, December)

Detailed reference viewed: 10 (0 ULg)
Full Text
See detailSearching for Terrestrial Planets Orbiting in the Habitable Zone of Ultra-Cool Stars and Brown Dwarfs
Demory, Brice-Olivier; Seager, Sara; Lissauer, Jack et al

E-print/Working paper (2013)

We propose to use Kepler in 2-wheel mode to conduct a detailed search for Earth-sized planets orbiting ultra-cool stars and brown dwarfs (spectral types from M7 to L3). This population of objects presents ... [more ▼]

We propose to use Kepler in 2-wheel mode to conduct a detailed search for Earth-sized planets orbiting ultra-cool stars and brown dwarfs (spectral types from M7 to L3). This population of objects presents several advantages for exoplanet surveys. First, ultra-cool stars and brown dwarfs are small and thus result in favorable planet-to-star area ratios. Second, because of their low effective temperature, the inner edge of their habitable zone is extremely close (2 to 3 days only). Third, our targets are bright at infrared wavelengths, which will enable detailed follow-up studies. Our program therefore represents a unique opportunity to find a transiting Earth-size exoplanet for which atmospheric features (including biosignatures) could be detected with near-to-come facilities such as JWST. Such exoplanet has not been discovered yet. Kepler in 2-wheel mode provides the required stability and photometric precision to make this survey successful. Our initial target sample includes 60 ultra-cool stars and brown dwarfs from which we expect to detect at least one transiting planet. We propose to monitor each source for 4 days, resulting in a total program duration of ~240 days. [less ▲]

Detailed reference viewed: 2 (0 ULg)
Full Text
Peer Reviewed
See detailThe EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit
Triaud, Amaury H. M. J.; Hebb, Leslie; Anderson, David R. et al

in Astronomy and Astrophysics (2013), 549

This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects ... [more ▼]

This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial planes. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass--radius relationship, whereas WASP-30b lies above it. [less ▲]

Detailed reference viewed: 22 (3 ULg)
Full Text
Peer Reviewed
See detailHigh precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
Malbet, Fabien; Léger, Alain; Shao, Michael et al

in Experimental Astronomy (2012), 34(2), 385-413

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within ... [more ▼]

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d ≤ 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT—the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 μas (1 σ) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun. [less ▲]

Detailed reference viewed: 69 (20 ULg)
Full Text
See detailBehind the Scenes of the Discovery of Two Extrasolar Planets: ESO Large Programme 666
Minniti, Dante; Naef, Claudio; Udalski, Andrzej et al

in The Messenger (2008), 133

This is the story of the Large Programme 666, dedicated to discover sub-stellar objects (extrasolar planets and brown dwarfs), and to measure their masses, radii, and mean densities. We hunt selected OGLE ... [more ▼]

This is the story of the Large Programme 666, dedicated to discover sub-stellar objects (extrasolar planets and brown dwarfs), and to measure their masses, radii, and mean densities. We hunt selected OGLE transit candidates using spectroscopy and photometry in the ‘twilight zone’, stretching the limits of what is nowadays possible with the VLT. [less ▲]

Detailed reference viewed: 9 (3 ULg)