References of "Queloz, D"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTransit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star
Van Grootel, Valérie ULg; Gillon, Michaël ULg; Valencia, D. et al

in Astrophysical Journal (2014), 786

Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition ... [more ▼]

Super-Earths transiting nearby bright stars are key objects that simultaneously allow for accurate measurements of both their mass and radius, providing essential constraints on their internal composition. We present here the confirmation, based on Spitzer transit observations, that the super-Earth HD 97658 b transits its host star. HD 97658 is a low-mass ($M_*=0.77\pm0.05\,M_{\odot}$) K1 dwarf, as determined from the Hipparcos parallax and stellar evolution modeling. To constrain the planet parameters, we carry out Bayesian global analyses of Keck-HIRES radial velocities, and MOST and Spitzer photometry. HD 97658 b is a massive ($M_P=7.55^{+0.83}_{-0.79} M_{\oplus}$) and large ($R_{P} = 2.247^{+0.098}_{-0.095} R_{\oplus}$ at 4.5 $\mu$m) super-Earth. We investigate the possible internal compositions for HD 97658 b. Our results indicate a large rocky component, by at least 60% by mass, and very little H-He components, at most 2% by mass. We also discuss how future asteroseismic observations can improve the knowledge of the HD 97658 system, in particular by constraining its age. Orbiting a bright host star, HD 97658 b will be a key target for coming space missions TESS, CHEOPS, PLATO, and also JWST, to characterize thoroughly its structure and atmosphere. [less ▲]

Detailed reference viewed: 29 (9 ULg)
Full Text
Peer Reviewed
See detailTransiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars
Delrez, Laetitia ULg; Van Grootel, Valérie ULg; Anderson, D. R. et al

in Astronomy and Astrophysics (2014)

We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V ... [more ▼]

We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 \rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. WASP-73 appears to be a significantly evolved star, close to or already in the subgiant phase. WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. [less ▲]

Detailed reference viewed: 14 (4 ULg)
Full Text
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

E-print/Working paper (2014)

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R_{\rm Jup}$) in a 4.9-day, near-aligned ($\lambda = 8.1 \pm 3.6^\circ$) orbit around CD-24 102 ($V$=10.7; F9). WASP-28b is an inflated, Jupiter-mass planet (0.91 $M_{\rm Jup}$; 1.21 $R_{\rm Jup}$) in a 3.4-day, near-aligned ($\lambda = 8 \pm 18^\circ$) orbit around a $V$=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars ($7^{+2}_{-1}$ Gyr for WASP-20 and $5^{+3}_{-2}$ Gyr for WASP-28; both with $T_{\rm eff}$ < 6250 K), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. [less ▲]

Detailed reference viewed: 12 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-103b: a new planet at the edge of tidal disruption
Gillon, Michaël ULg; Anderson, D. R.; Collier-Cameron, A. et al

in Astronomy and Astrophysics (2014)

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP ... [more ▼]

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP-103b is significantly more massive (1.49+-0.09 Mjup) and larger (1.53-0.07+0.05 Rjup) than Jupiter. Its large size and extreme irradiation (around 9 10^9 erg/s/cm^2) make it an exquisite target for a thorough atmospheric characterization with existing facilities. Furthermore, its orbital distance is less than 20% larger than its Roche radius, meaning that it might be significantly distorted by tides and might experience mass loss through Roche-lobe overflow. It thus represents a new key object for understanding the last stage of the tidal evolution of hot Jupiters. [less ▲]

Detailed reference viewed: 16 (3 ULg)
Full Text
Peer Reviewed
See detailA Photometric Study of the Hot Exoplanet WASP-19b
Lendl, M.; Gillon, Michaël ULg; Queloz, D. et al

in Astronomy and Astrophysics (2013), 552

Context. The sample of hot Jupiters that have been studied in great detail is still growing. In particular, when the planet transits its host star, it is possible to measure the planetary radius and the ... [more ▼]

Context. The sample of hot Jupiters that have been studied in great detail is still growing. In particular, when the planet transits its host star, it is possible to measure the planetary radius and the planet mass (with radial velocity data). For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, I-Cousins, z'-Gunn, and I + z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 μm. We performed a global MCMC analysis of all new data, together with some archive data in order to refine the planetary parameters and to measure the occultation depths in z'-band and at 1.19 μm. Results: We measure a planetary radius of Rp = 1.376 ± 0.046 RJ, a planetary mass of Mp = 1.165 ± 0.068 MJ, and find a very low eccentricity of e = 0.0077-0.0032+0.0068, compatible with a circular orbit. We have detected the z'-band occultation at 3σ significance and measure it to be δFocc,z' = 352 ± 116 ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 μm is only marginally constrained at δFocc,NB1190 = 1711-726+745 ppm. Conclusions: We show that the detection of occultations in the visible range is within reach, even for 1 m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion. [less ▲]

Detailed reference viewed: 31 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-71b: a bloated hot Jupiter in an 2.9-day, prograde orbit around an evolved F8 star
Smith, A. M. S.; Anderson, D. R.; Bouchy, F. et al

in Astronomy and Astrophysics (2013), 552

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b ... [more ▼]

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b, is larger than Jupiter (1.46 +/- 0.13 RJup), but less dense (0.71 +/- 0.16 {\rho}Jup). We also report spectroscopic observations made during transit with the CORALIE spectrograph, which allow us to make a highly-significant detection of the Rossiter-McLaughlin effect. We determine the sky-projected angle between the stellar-spin and planetary-orbit axes to be {\lambda} = 20.1 +/- 9.7 degrees, i.e. the system is 'aligned', according to the widely-used alignment criteria that systems are regarded as misaligned only when {\lambda} is measured to be greater than 10 degrees with 3-{\sigma} confidence. WASP-71, with an effective temperature of 6059 +/- 98 K, therefore fits the previously observed pattern that only stars hotter than 6250 K are host to planets in misaligned orbits. We emphasise, however, that {\lambda} is merely the sky-projected obliquity angle; we are unable to determine whether the stellar-spin and planetary-orbit axes are misaligned along the line-of-sight. With a mass of 1.56 +/- 0.07 Msun, WASP-71 was previously hotter than 6250 K, and therefore might have been significantly misaligned in the past. If so, the planetary orbit has been realigned, presumably through tidal interactions with the cooling star's growing convective zone. [less ▲]

Detailed reference viewed: 23 (5 ULg)
Full Text
See detailThree irradiated and bloated hot Jupiters: WASP-76b, WASP-82b & WASP-90b
West, R. G.; Almenara, J.-M.; Anderson, D. R. et al

E-print/Working paper (2013)

We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three ... [more ▼]

We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three planets are inflated, with radii 1.7-1.8 Rjup. All orbit hot stars, F5-F7, and all three stars have evolved, post-MS radii (1.7-2.2 Rsun). Thus the three planets, with orbits of 1.8-3.9 d, are among the most irradiated planets known. This reinforces the correlation between inflated planets and stellar irradiation. [less ▲]

Detailed reference viewed: 8 (0 ULg)
Full Text
See detailTransiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

E-print/Working paper (2013)

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1 to 5.7 d, masses ... [more ▼]

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1 to 5.7 d, masses of 0.5 to 2.8 Mjup, and radii of 1.1 to 1.4 Rjup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b shows the shallowest transit yet found by WASP-South, at 0.4%. The host stars are of spectral type F2 to G8. Five have metallicities of [Fe/H] from -0.03 to +0.23, while WASP-98 has a metallicity of -0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HAT project. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
See detailThree sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary
Anderson, D. R.; Collier Cameron, A.; Delrez, Laetitia ULg et al

E-print/Working paper (2013)

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\rm Jup}$, 1.06 R$_{\rm ... [more ▼]

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\rm Jup}$, 1.06 R$_{\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\rm Jup}$, 1.16R$_{\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\geq$800 AU). We exploit the binary nature of the system to construct a H-R diagram, from which we estimate its age to be 9-10 Gyr. WASP-84b is a sub-Jupiter-mass planet (0.69 M$_{\rm Jup}$, 0.94 R$_{\rm Jup}$) in an 8.523-d orbit around an active early-K dwarf. Of the transiting planets discovered from the ground to date, WASP-84b has the third-longest period. From a combination of gyrochronological and age-activity relations we estimate the age of WASP-84 to be ~1 Gyr. For both the active stars WASP-69 and WASP-84 we find a modulation of the radial velocities with a period similar to the photometrically-determined stellar rotation period. We fit the residuals with a low-order harmonic series and subtract the best fit from the RVs prior to deriving the system parameters. In each case the solution is essentially unchanged, with much less than a 1-{\sigma} change to the planetary mass. We found... [less ▲]

Detailed reference viewed: 4 (0 ULg)
Full Text
See detailTowards the first transmission spectrum of a gas giant transiting an M-dwarf
Delrez, Laetitia ULg; Gillon, Michaël ULg; Lendl, M. et al

Poster (2013, July 15)

At the forefront of comparative exoplanetology, the atmospheric characterization of transiting exoplanets is revealing the intimate nature of these new worlds. In this exciting context, we are currently ... [more ▼]

At the forefront of comparative exoplanetology, the atmospheric characterization of transiting exoplanets is revealing the intimate nature of these new worlds. In this exciting context, we are currently conducting a VLT observing campaign on a rare exoplanet specimen, WASP-80b, a gas giant in close orbit around a bright nearby M-dwarf. Even if this planet belongs to the hot-Jupiter population, it is actually more ‘warm’ than ‘hot’ with an estimated equilibrium temperature of only 800K. We present here some preliminary results of this program which consists in monitoring four transits of WASP-80b with the FORS2 instrument in multi-object spectroscopic mode in ESO phase 91. Through this approach, our goal is to precisely measure the transmission spectrum of the planet between 740 and 1070 nm in order to constrain the thermal structure and scacering properties of the planetary atmosphere. Furthermore, we will use the water features located around 950 nm to constrain the water mixing ratio in the atmosphere of this peculiar hot Jupiter. [less ▲]

Detailed reference viewed: 11 (0 ULg)
Full Text
Peer Reviewed
See detailFast-evolving weather for the coolest of our two new substellar neighbours
Gillon, Michaël ULg; Triaud, A. H. M. J.; Jehin, Emmanuel ULg et al

in Astronomy and Astrophysics (2013), 555

We present the results of an intense photometric monitoring in the near-infrared (~0.9 microns) with the TRAPPIST robotic telescope of the newly discovered binary brown dwarf WISE J104915.57-531906.1, the ... [more ▼]

We present the results of an intense photometric monitoring in the near-infrared (~0.9 microns) with the TRAPPIST robotic telescope of the newly discovered binary brown dwarf WISE J104915.57-531906.1, the third closest system to the Sun at a distance of only 2 pc. Our twelve nights of photometric time-series reveal a quasi-periodic (P = 4.87+-0.01 h) variability with a maximal peak-peak amplitude of ~11% and strong night-to-night evolution. We attribute this variability to the rotational modulation of fast-evolving weather patterns in the atmosphere of the coolest component (~T1-type) of the binary. No periodic signal is detected for the hottest component (~L8-type). For both brown dwarfs, our data allow us to firmly discard any unique transit during our observations for planets >= 2 Rearth. For orbital periods smaller than ~9.5 h, transiting planets are excluded down to an Earth-size. [less ▲]

Detailed reference viewed: 14 (7 ULg)
Full Text
Peer Reviewed
See detailTransiting exoplanets from the CoRoT space mission. XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets
Almenara, J. M.; Bouchy, F.; Gaulme, P. et al

in Astronomy and Astrophysics (2013), 555

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations ... [more ▼]

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations through optical photometry and radial velocity measurements secured the planetary nature of the transiting body and allowed us to fully characterize them. For CoRoT-25b we found a planetary mass of 0.27 ± 0.04 M[SUB]Jup[/SUB], a radius of 1.08[SUB]-0.10[/SUB][SUP]+0.3[/SUP] R[SUB]Jup[/SUB] and hence a mean density of 0.15[SUB]-0.06[/SUB][SUP]+0.15[/SUP] g cm[SUP]-3[/SUP]. The planet orbits an F9 main-sequence star in a 4.86-day period, that has a V magnitude of 15.0, solar metallicity, and an age of 4.5[SUB]-2.0[/SUB][SUP]+1.8[/SUP]-Gyr. CoRoT-26b orbits a slightly evolved G5 star of 9.06 ± 1.5-Gyr age in a 4.20-day period that hassolar metallicity and a V magnitude of 15.8. With a mass of 0.52 ± 0.05 M[SUB]Jup[/SUB], a radius of 1.26[SUB]-0.07[/SUB][SUP]+0.13[/SUP] R[SUB]Jup[/SUB], and a mean density of 0.28[SUB]-0.07[/SUB][SUP]+0.09[/SUP] g cm[SUP]-3[/SUP], it belongs to the low-mass hot-Jupiter population. Planetary evolution models allowed us to estimate a core mass of a few tens of Earth mass for the two planets with heavy-element mass fractions of 0.52[SUB]-0.15[/SUB][SUP]+0.08[/SUP] and 0.26[SUB]-0.08[/SUB][SUP]+0.05[/SUP], respectively, assuming that a small fraction of the incoming flux is dissipated at the center of the planet. In addition, these models indicate that CoRoT-26b is anomalously large compared with what standard models could account for, indicating that dissipation from stellar heating could cause this size. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Partly based on observations obtained at the European Southern Observatory at Paranal and La Silla, Chile in programs 083.C-0690(A), 184.C-0639. [less ▲]

Detailed reference viewed: 17 (0 ULg)
Full Text
See detailDiscovery of WASP-65b and WASP-75b: Two Hot Jupiters Without Highly Inflated Radii
Gómez Maqueo Chew, Y.; Faedi, F.; Pollacco, D. et al

E-print/Working paper (2013)

We report the discovery of two transiting hot Jupiters, WASP-65b (M_pl = 1.55 +/- 0.16 M_J; R_pl = 1.11 +/- 0.06 R_J), and WASP-75b (M_pl = 1.07 +/- 0.05 M_J; R_pl = 1.27 +/- 0.05 R_J). They orbit their ... [more ▼]

We report the discovery of two transiting hot Jupiters, WASP-65b (M_pl = 1.55 +/- 0.16 M_J; R_pl = 1.11 +/- 0.06 R_J), and WASP-75b (M_pl = 1.07 +/- 0.05 M_J; R_pl = 1.27 +/- 0.05 R_J). They orbit their host star every 2.311, and 2.484 days, respectively. The planet host WASP-65 is a G6 star (T_eff = 5600 K, [Fe/H] = -0.07 +/- 0.07, age > 8 Gyr); WASP-75 is an F9 star (T_eff = 6100 K, [Fe/H] = 0.07 +/- 0.09, age of 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 M_J (rho_pl = 1.13 +/- 0.08 rho_J), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of around 1.5 M_J, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of Jupiter-mass WASP-75b is slightly inflated (< 10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (rho_pl = 0.52 +/- 0.06 rho_J). [less ▲]

Detailed reference viewed: 17 (1 ULg)
Full Text
See detailThe HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ163, with a super-Earth possibly in the habitable zone
Bonfils, X.; Lo Curto, G.; Correia, A. C. M. et al

E-print/Working paper (2013)

The meter-per-second precision achieved by today velocimeters enables the search for 1-10 M_Earth planets in the habitable zone of cool stars. This paper reports on the detection of 3 planets orbiting ... [more ▼]

The meter-per-second precision achieved by today velocimeters enables the search for 1-10 M_Earth planets in the habitable zone of cool stars. This paper reports on the detection of 3 planets orbiting GJ163 (HIP19394), a M3 dwarf monitored by our ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ163 over a period of 8 years. We searched the RV time series for coherent signals and found 5 distinct periodic variabilities. We investigated the stellar activity and casted doubts on the planetary interpretation for 2 signals. Before more data can be acquired we concluded that at least 3 planets are orbiting GJ163. They have orbital periods of P_b=8.632+-0.002, P_c=25.63+-0.03 and P_d=604+-8 days and minimum masses msini = 10.6+-0.6, 6.8+-0.9, and 29+-3 M_Earth, respectively. We hold our interpretations for the 2 additional signals with periods P_(e)=19.4 and P_(f)=108 days. The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean motion resonance. GJ163c, in particular, is a super-Earth with an equilibrium temperature of T_eq = (302+-10) (1-A)^(1/4) K and may lie in the so called habitable zone for albedo values (A=0.34-0.89) moderately higher than that of Earth (A_Earth=0.2-0.3). [less ▲]

Detailed reference viewed: 7 (0 ULg)
Full Text
Peer Reviewed
See detailWarm Spitzer Occultation Photometry of WASP-26b at 3.6{\mu}m and 4.5{\mu}m
Mahtani, D. P.; Maxted, P. F. L.; Anderson, D. R. et al

in Monthly Notices of the Royal Astronomical Society (2013), 432(1), 693-701

We present new warm Spitzer occultation photometry of WASP-26 at 3.6{\mu}m and 4.5{\mu}m along with new transit photometry taken in the g,r and i bands. We report the first detection of the occultation of ... [more ▼]

We present new warm Spitzer occultation photometry of WASP-26 at 3.6{\mu}m and 4.5{\mu}m along with new transit photometry taken in the g,r and i bands. We report the first detection of the occultation of WASP-26b, with occultation depths at 3.6{\mu}m and 4.5{\mu}m of 0.00126 +/- 0.00013 and 0.00149 +/- 0.00016 corresponding to brightness temperatures of 1825+/-80K and 1725+/-89K, respectively. We find that the eccentricity of the orbit is consistent with a circular orbit at the 1{\sigma} level with a 3{\sigma} upper limit of e < 0.04. According to the activity-inversion relation of Knutson et al. (2010), WASP-26b is predicted to host a thermal inversion. The brightness temperatures deduced from the eclipse depths are consistent with an isothermal atmosphere, although it is within the uncertainties that the planet may host a weak thermal inversion. The data are equally well fit by atmospheric models with or without a thermal inversion. We find that variation in activity of solar-like stars does not change enough over the time-scales of months or years to change the interpretation of the Knutson et al. (2010) activity-inversion relation, provided that the measured activity level is averaged over several nights. Further data are required to fully constrain the thermal structure of the atmosphere because the planet lies very close to the boundary between atmospheres with and without a thermal inversion. [less ▲]

Detailed reference viewed: 7 (1 ULg)
Full Text
See detailCHEOPS: A transit photometry mission for ESA's small mission programme
Broeg, C.; Fortier, A.; Ehrenreich, D. et al

in Saglia, Roberto (Ed.) European Physical Journal Web of Conferences (2013, April 01)

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and ... [more ▼]

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite) will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes. [less ▲]

Detailed reference viewed: 15 (3 ULg)
Full Text
See detailTRAPPIST-UCDTS: A prototype search for habitable planets transiting ultra-cool stars
Gillon, Michaël ULg; Jehin, Emmanuel ULg; Fumel, A. et al

in Saglia, Roberto (Ed.) European Physical Journal Web of Conferences (2013, April 01)

The ˜1000 nearest ultra-cool stars (spectral type M6 and latter) represent a unique opportunity for the search for life outside solar system. Due to their small luminosity, their habitable zone is 30-100 ... [more ▼]

The ˜1000 nearest ultra-cool stars (spectral type M6 and latter) represent a unique opportunity for the search for life outside solar system. Due to their small luminosity, their habitable zone is 30-100 times closer than for the Sun, the corresponding orbital periods ranging from one to a few days. Thanks to this proximity, the transits of a habitable planet are much more probable and frequent than for an Earth-Sun analog, while their tiny size (˜1 Jupiter radius) leads to transits deep enough for a ground-based detection, even for sub-Earth size planets. Furthermore, a habitable planet transiting one of these nearby ultra-cool star would be amenable for a thorough atmospheric characterization, including the detection of possible biosignatures, notably with the near-to-come JWST. Motivated by these reasons, we have set up the concept of a ground-based survey optimized for detecting planets of Earth-size and below transiting the nearest Southern ultra-cool stars. To assess thoroughly the actual potential of this future survey, we are currently conducting a prototype mini-survey using the TRAPPIST robotic 60cm telescope located at La Silla ESO Observatory (Chile). We summarize here the preliminary results of this mini-survey that fully validate our concept. [less ▲]

Detailed reference viewed: 16 (1 ULg)
Full Text
Peer Reviewed
See detailThermal emission at 3.6-8 micron from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star
Anderson, D. R.; Smith, A. M. S.; Madhusudhan, N. et al

in Monthly Notices of the Royal Astronomical Society (2013), 430(4), 3422-3431

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by ... [more ▼]

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 μm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by its host star. We combine our new detections with previous measurements of WASP-19b's emission at 1.6 and 2.09 μm to construct a spectral energy distribution of the planet's dayside atmosphere. By comparing this with model-atmosphere spectra, we find that the dayside atmosphere of WASP-19b lacks a strong temperature inversion. As WASP-19 is an active star (log R'HK = -4.50 ± 0.03), this finding supports the hypothesis of Knutson, Howard and Isaacson that inversions are suppressed in hot Jupiters orbiting active stars. The available data are unable to differentiate between a carbon-rich and an oxygen-rich atmosphere. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailWASP-64b and WASP-72b: two new transiting highly irradiated giant planets
Gillon, Michaël ULg; Anderson, D. R.; Collier-Cameron, A. et al

in Astronomy and Astrophysics (2013), 552

We report the discovery by the WASP transit survey of two new highly irradiated giant planets. WASP-64 b is slightly more massive (1.271 ± 0.068 MJup) and larger (1.271 ± 0.039 RJup) than Jupiter, and is ... [more ▼]

We report the discovery by the WASP transit survey of two new highly irradiated giant planets. WASP-64 b is slightly more massive (1.271 ± 0.068 MJup) and larger (1.271 ± 0.039 RJup) than Jupiter, and is in very-short (a = 0.02648 ± 0.00024 AU, P = 1.5732918 ± 0.0000015 days) circular orbit around a V = 12.3 G7-type dwarf (1.004 ± 0.028 Msun, 1.058 ± 0.025 Rsun, Teff = 5500 ± 150 K). Its size is typical of hot Jupiters with similar masses. WASP-72 b has also a mass a bit higher than Jupiter's (1.461-0.056+0.059 MJup) and orbits very close (0.03708 ± 0.00050 AU, P = 2.2167421 ± 0.0000081 days) to a bright (V = 9.6) and moderately evolved F7-type star (1.386 ± 0.055 Msun, 1.98 ± 0.24 Rsun, Teff = 6250 ± 100 K). Despite its extreme irradiation (~5.5 × 109 erg s-1 cm-2), WASP-72 b has a moderate size (1.27 ± 0.20 RJup) that could suggest a significant enrichment in heavy elements. Nevertheless, the errors on its physical parameters are still too high to draw any strong inference on its internal structure or its possible peculiarity. [less ▲]

Detailed reference viewed: 13 (1 ULg)
Full Text
See detailSearching for water in the atmosphere of the hot Saturn WASP-49b
Delrez, Laetitia ULg; Lendl, M.; Gillon, Michaël ULg et al

Poster (2013, March 11)

At the forefront of comparative exoplanetology, the atmospheric characterization of transiting exoplanets is revealing the intimate nature of these 'new worlds'. In this exciting context, we present here ... [more ▼]

At the forefront of comparative exoplanetology, the atmospheric characterization of transiting exoplanets is revealing the intimate nature of these 'new worlds'. In this exciting context, we present here some preliminary results of our VLT program that consisted in monitoring three transits of the new 'hot Saturn' WASP-49b (Lendl et al. 2012) with the FORS instrument in Multi-Object Spectroscopic mode (MXU). [less ▲]

Detailed reference viewed: 14 (0 ULg)