References of "Power, Pablo"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCrystal Structure of the Extended-Spectrum β -Lactamase PER-2 and Insights into the Role of Specific Residues in the Interaction with β -Lactams and β -Lactamase Inhibitors
Ruggiero, Melina; Kerff, Frédéric ULg; Herman, Raphaël ULg et al

in Antimicrobial Agents and Chemotherapy (2014), 58(10), 5994-6002

PER-2 belongs to a small (7 members to date) group of extended-spectrum beta-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most beta-lactams. In ... [more ▼]

PER-2 belongs to a small (7 members to date) group of extended-spectrum beta-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most beta-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 A and evaluated the possible role of several residues in the structure and activity toward beta-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Omega loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A beta-lactamases. PER beta-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER beta-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different beta-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior. [less ▲]

Detailed reference viewed: 13 (6 ULg)
Full Text
Peer Reviewed
See detailNovel fragments of clavulanate observed in the structure of the class A b-lactamase from Bacillus licheniformis BS3
Power, Pablo; Mercuri, Paola ULg; Herman, Raphaël ULg et al

in Journal of Antimicrobial Chemotherapy (2012), 67(10), 2379-2387

Detailed reference viewed: 16 (7 ULg)
Full Text
Peer Reviewed
See detailExploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements
Berlemont, Renaud ULg; Pipers; Delsaute, Maud ULg et al

in Revista Argentina de Microbiologia (2011)

Metagenomic library PP1 was obtained from Antarctic soil samples. Both functional and genotypic metagenomic screening were used for the isolation of novel cold-adapted enzymes with potential applications ... [more ▼]

Metagenomic library PP1 was obtained from Antarctic soil samples. Both functional and genotypic metagenomic screening were used for the isolation of novel cold-adapted enzymes with potential applications, and for the detection of genetic elements associated with gene mobilization, respectively. Fourteen lipase/esterase-, 14 amylase-, 3 protease-, and 11 cellulase-producing clones were detected by activity-driven screening, with apparent maximum activities around 35 °C for both amylolytic and lipolytic enzymes, and 35-55 °C for cellulases, as observed for other cold-adapted enzymes. However, the behavior of at least one of the studied cellulases is more compatible to that observed for mesophilic enzymes. These enzymes are usually still active at temperatures above 60 °C, probably resulting in a psychrotolerant behavior in Antarctic soils. Metagenomics allows to access novel genes encoding for enzymatic and biophysic properties from almost every environment with potential benefits for biotechnological and industrial applications. Only intI- and tnp-like genes were detected by PC R, encoding for proteins with 58-86%, and 58-73% amino acid identity with known entries, respectively. Two clones, BAC 27A-9 and BAC 14A-5, seem to present unique syntenic organizations, suggesting the occurrence of gene rearrangements that were probably due to evolutionary divergences within the genus or facilitated by the association with transposable elements. The evidence for genetic elements related to recruitment and mobilization of genes (transposons/integrons) in an extreme environment like Antarctica reinforces the hypothesis [less ▲]

Detailed reference viewed: 90 (17 ULg)
Full Text
Peer Reviewed
See detailDescription of In116, the first blaCTX-M-2-containing complex class 1 integron found in Morganella morganii isolates from Buenos Aires, Argentina
Power, pablo; Galleni, Moreno ULg; Di Conza, José et al

in Journal of Antimicrobial Chemotherapy (2005), 55(4), 461-465

Detailed reference viewed: 9 (0 ULg)