References of "Porter, S"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTraditional and quantitative assessment of acid-base and shock variables in horses with atypical myopathy
van Galen, G; Cerri, Simona ULg; Porter, S et al

in Journal of Veterinary Internal Medicine (2013), 27(1), 186-193

BACKGROUND: Descriptions of acid-base disturbances in atypical myopathy (AM) are limited. OBJECTIVES: Describe and compare traditional and quantitative acid-base abnormalities and cardiovascular shock ... [more ▼]

BACKGROUND: Descriptions of acid-base disturbances in atypical myopathy (AM) are limited. OBJECTIVES: Describe and compare traditional and quantitative acid-base abnormalities and cardiovascular shock status in horses with AM at admission. ANIMALS: 34 horses with AM, 15 healthy controls. METHODS: Retrospective case-control study. Records were searched for shock variables (packed cell volume [PCV], blood urea nitrogen [BUN], heart and respiratory rate) and acid-base variables (venous blood gas analysis, electrolytes, total protein, lactate) on admission. Base excess (BE) of free water (BEfw), chloride (BEcl), total protein (BEtp), and unidentified anions (BEua), anion gap (AG), measured strong ion difference (SIDm), and concentration of total nonvolatile weak acids ([Atot]) were calculated. Acid-base classifications, using simplified strong ion model and traditional approach, and shock grades were assigned. A 2-sample Wilcoxon rank-sum test and Bonferroni correction compared variables in AM cases versus control horses. Significance was P < .05/16 for acid-base and P < .05/5 for shock variables. RESULTS: Tachycardia, tachypnea, and normal to increased PCV and BUN were common in AM cases. Respiratory, metabolic acid-base alterations, or both were mainly caused by respiratory alkalosis, lactic acidosis, and SIDm alkalosis, alone or in combination. Evaluated variables (except pH, potassium concentration, total protein, and related calculations) were significantly different (P < .001) between AM cases and control horses. The strong ion model provided a more accurate assessment than the traditional approach and identified mixed derangements. CONCLUSIONS AND CLINICAL IMPORTANCE: Acid-base derangements should be evaluated in horses with AM and this preferably with the strong ion model. [less ▲]

Detailed reference viewed: 17 (6 ULg)
Full Text
Peer Reviewed
See detailORIGIN: metal creation and evolution from the cosmic dawn
den Herder, Jan-Willem; Piro, Luigi; Ohashi, Takaya et al

in Experimental Astronomy (2012), 34

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to ... [more ▼]

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts ( z ˜0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm[SUP]2[/SUP]/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ˜65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit. [less ▲]

Detailed reference viewed: 20 (4 ULg)
See detailEpidemiology of Q fever in animals and humans in the 21st century
Mainil, Jacques ULg; Porter, S.; Czaplicky, G. et al

Conference (2011)

Detailed reference viewed: 3 (0 ULg)