References of "Pollacco, D"
     in
Bookmark and Share    
Full Text
See detailWASP-121 b: a hot Jupiter in a polar orbit and close to tidal disruption
Delrez, Laetitia ULg; Santerne, A.; Almenara, J.-M. et al

E-print/Working paper (2015)

We present the discovery by the WASP-South survey, in close collaboration with the Euler and TRAPPIST telescopes, of WASP-121 b, a new remarkable short-period transiting hot Jupiter, whose planetary ... [more ▼]

We present the discovery by the WASP-South survey, in close collaboration with the Euler and TRAPPIST telescopes, of WASP-121 b, a new remarkable short-period transiting hot Jupiter, whose planetary nature has been statistically validated by the PASTIS software. The planet has a mass of 1.183+0.064−0.062 MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.2749255+0.0000020−0.0000025 days an active F6-type main-sequence star (V=10.4, 1.353+0.080−0.079 M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semi-major axis is only ∼1.15 times larger than its Roche limit, which suggests that the planet might be close to tidal disruption. Furthermore, its large size and extreme irradiation (∼7.1 10^9 erg s−1cm−2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAPPIST telescope, we indeed detect its emission in the z′-band at better than ∼4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8+5.3−5.5 deg. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet, the planet being in a nearly polar orbit. Such a high misalignment suggests a migration of the planet involving strong dynamical events with a third body. [less ▲]

Detailed reference viewed: 14 (1 ULg)
Full Text
See detailDiscovery of WASP-85Ab: a hot Jupiter in a visual binary system
Brown, D. J. A.; Anderson, D. R.; Armstrong, D. J. et al

E-print/Working paper (2014)

We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 ... [more ▼]

We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 days, and has a mass of 1.09+/-0.03 M_Jup and a radius of 1.44+/-0.02 R_Jup. The host star is of G5 spectral type, with magnitude V=11.2, and lies 125+/-80 pc distant. We find stellar parameters of T_eff=5685+/-65 K, super-solar metallicity ([Fe/H]=0.08+/-0.10), M_star=1.04+/-0.07 M_sun and R_star=0.96+/-0.13 R_sun. The system has a K-dwarf binary companion, WASP-85B, at a separation of approximately 1.5". The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Without this correction, we find the depth to be 50 percent smaller, the stellar density to be 32 percent smaller, and the planet radius to be 18 percent smaller than the true value. Many of our radial velocity observations are also contaminated; these are disregarded when analysing the system in favour of the uncontaminated HARPS observations, as they have reduced semi-amplitudes that lead to underestimated planetary masses. We find a long-term trend in the binary position angle, indicating a misalignment between the binary and orbital planes. WASP observations of the system show variability with a period of 14.64 days, indicative of rotational modulation caused by stellar activity. Analysis of the Ca ii H+K lines shows strong emission that implies that both binary components are strongly active. We find that the system is likely to be less than a few Gyr old. WASP-85 lies in the field of view of K2 Campaign 1. Long cadence observations of the planet clearly show the planetary transits, along with the signature of stellar variability. Analysis of the K2 data, both long and short cadence, is ongoing. [less ▲]

Detailed reference viewed: 37 (3 ULg)
Full Text
Peer Reviewed
See detailWASP-94 A and B planets: hot-Jupiter cousins in a twin-star system
Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R. et al

in Astronomy and Astrophysics (2014), 572

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. <ASTROBJ>WASP-94A</ASTROBJ> (<ASTROBJ>2MASS 20550794-3408079</ASTROBJ>) is an F8 type star ... [more ▼]

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. <ASTROBJ>WASP-94A</ASTROBJ> (<ASTROBJ>2MASS 20550794-3408079</ASTROBJ>) is an F8 type star hosting a transiting planet with a radius of 1.72 ± 0.06 R<SUB>Jup</SUB>, a mass of 0.452 ± 0.034 M<SUB>Jup</SUB>, and an orbital period of 3.95 days. The Rossiter-McLaughlin effect is clearly detected, and the measured projected spin-orbit angle indicates that the planet occupies a retrograde orbit. <ASTROBJ>WASP-94B</ASTROBJ> (<ASTROBJ>2MASS 20550915-3408078</ASTROBJ>) is an F9 stellar companion at an angular separation of 15'' (projected separation 2700 au), hosting a gas giant with a minimum mass of 0.618 ± 0.028 M<SUB>Jup</SUB> with a period of 2.008 days, detected by Doppler measurements. The orbital planes of the two planets are inclined relative to each other, indicating that at least one of them is inclined relative to the plane of the stellar binary. These hot Jupiters in a binary system bring new insights into the formation of close-in giant planets and the role of stellar multiplicity. The radial-velocity and photometric data used for this work are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A49">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A49</A> [less ▲]

Detailed reference viewed: 16 (2 ULg)
Full Text
Peer Reviewed
See detailThree sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary
Anderson, D. R.; Collier Cameron, A.; Delrez, Laetitia ULg et al

in Monthly Notices of the Royal Astronomical Society (2014), 445(2),

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ˜ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3 ... [more ▼]

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ˜ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3.868-d period around an active, ˜1-Gyr, mid-K dwarf. ROSAT detected X-rays 60±27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ˜1012 g s-1. This is one to two orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously large Lyman alpha absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 MJup, 1.16 RJup) in a 3.713-d orbit around the primary of a spatially resolved, 9-10-Gyr, G4+K3 binary, with a separation of 3.3 arcsec (>=800 au). WASP-84b is a sub-Jupiter-mass planet (0.69 MJup, 0.94 RJup) in an 8.523-d orbit around an active, ˜1-Gyr, early-K dwarf. Of the transiting planets discovered from the ground to date, WASP-84b has the third-longest period. For the active stars WASP-69 and WASP-84, we pre-whitened the radial velocities using a low-order harmonic series. We found that this reduced the residual scatter more than did the oft-used method of pre-whitening with a fit between residual radial velocity and bisector span. The system parameters were essentially unaffected by pre-whitening. [less ▲]

Detailed reference viewed: 21 (2 ULg)
Full Text
Peer Reviewed
See detailWASP-104b and WASP-106b: two transiting hot Jupiters in 1.75-day and 9.3-day orbits
Smith, A. M. S.; Anderson, D. R.; Armstrong, D. J. et al

in Astronomy and Astrophysics (2014)

We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d ... [more ▼]

We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of 1.27±0.05 MJup, while WASP-106b has a mass of 1.93±0.08 MJup). Both planets are just slightly larger than Jupiter, with radii of 1.14±0.04 and 1.09±0.04 RJup for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits. [less ▲]

Detailed reference viewed: 18 (4 ULg)
Full Text
Peer Reviewed
See detailThe PLATO 2.0 Mission
Rauer, H.; Catala, C.; Aerts, C. et al

in Experimental Astronomy (2014)

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental ... [more ▼]

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science. [less ▲]

Detailed reference viewed: 18 (5 ULg)
Full Text
Peer Reviewed
See detailPlanets and Stellar Activity: Hide and Seek in the CoRoT-7 system
Haywood, R. D.; Cameron, A. C.; Queloz, D. et al

in Monthly Notices of the Royal Astronomical Society (2014), 443(3), 2517-2531

Since the discovery of the transiting Super-Earth CoRoT-7b, several investigations have been made of the number and precise masses of planets present in the system, but they all yield different results ... [more ▼]

Since the discovery of the transiting Super-Earth CoRoT-7b, several investigations have been made of the number and precise masses of planets present in the system, but they all yield different results, owing to the star's high level of activity. Radial velocity (RV) variations induced by stellar activity therefore need to be modelled and removed to allow a reliable detection of all planets in the system. We re-observed CoRoT-7 in January 2012 with both HARPS and the CoRoT satellite, so that we now have the benefit of simultaneous RV and photometric data. We fitted the off-transit variations in the CoRoT lightcurve using a harmonic decomposition similar to that implemented in Queloz et al. (2009). This fit was then used to model the stellar RV contribution, according to the methods described by Aigrain et al. (2011). This model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We also assess the evidence for the presence of one or two additional planetary companions. [less ▲]

Detailed reference viewed: 16 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-117b: a 10-day-period Saturn in an eccentric and misaligned orbit
Lendl, Monika ULg; Triaud, A. H. M. J.; Anderson, D. R. et al

in Astronomy and Astrophysics (2014), 568

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0 ... [more ▼]

We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of M_p = 0.2755 (+/-0.0090) M_jup, a radius of R_p = 1.021 (-0.065 +0.076) R_jup and is in an eccentric (e = 0.302 +/-0.023), 10.02165 +/- 0.00055 d orbit around a main-sequence F9 star. The host star's brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a planetary equilibrium temperature of T_eq = 1024 (-26 +30) K and a low planetary density (rho_p = 0.259 (-0.048 +0.054) rho_jup) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of beta = -44 (+/-11) deg, and we further derive an orbital obliquity of psi = 69.5 (+3.6 -3.1) deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days. [less ▲]

Detailed reference viewed: 18 (2 ULg)
Full Text
Peer Reviewed
See detailA window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b
Brothwell, R.D.; Watson, C.A.; Hébrard, G. et al

in Monthly Notices of the Royal Astronomical Society (2014), 440(4), 3392-3401

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and ... [more ▼]

We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (lambda). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of lambda =8°^{+13}_{-12} and lambda =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot = 11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* = 90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, psi, was found to be psi = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities. [less ▲]

Detailed reference viewed: 15 (1 ULg)
Full Text
Peer Reviewed
See detailTransiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b
Hellier, Coel; Anderson, D. R.; Collier Cameron, A. et al

in Monthly Notices of the Royal Astronomical Society (2014)

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of ... [more ▼]

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1-5.7 d, masses of 0.5-2.8 MJup and radii of 1.1-1.4 RJup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b produces the shallowest transit yet found by WASP-South, at 0.4 per cent. The host stars are of spectral type F2-G8. Five have metallicities of [Fe/H] from -0.03 to +0.23, while WASP-98 has a metallicity of -0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HATnet project. [less ▲]

Detailed reference viewed: 13 (0 ULg)
Full Text
Peer Reviewed
See detailDisentangling planetary orbits from stellar activity in radial-velocity surveys
Haywood, R. D.; Cameron, A. Collier; Queloz, D. et al

in International Journal of Astrobiology (2014), 13

The majority of extra-solar planets have been discovered (or confirmed after follow-up) through radial-velocity (RV) surveys. Using ground-based spectrographs such as High Accuracy Radial Velocity ... [more ▼]

The majority of extra-solar planets have been discovered (or confirmed after follow-up) through radial-velocity (RV) surveys. Using ground-based spectrographs such as High Accuracy Radial Velocity Planetary Search (HARPS) and HARPS-North, it is now possible to detect planets that are only a few times the mass of the Earth. However, the presence of dark spots on the stellar surface produces RV signals that are very similar in amplitude to those caused by orbiting low-mass planets. Disentangling these signals has thus become the biggest challenge in the detection of Earth-mass planets using RV surveys. To do so, we use the star's lightcurve to model the RV variations produced by spots. Here we present this method and show the results of its application to CoRoT-7. [less ▲]

Detailed reference viewed: 26 (2 ULg)
Full Text
Peer Reviewed
See detailTransiting planets from WASP-South, Euler and TRAPPIST: WASP-68 b, WASP-73 b and WASP-88 b, three hot Jupiters transiting evolved solar-type stars
Delrez, Laetitia ULg; Van Grootel, Valérie ULg; Anderson, D. R. et al

in Astronomy and Astrophysics (2014)

Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup ... [more ▼]

Using the WASP transit survey, we report the discovery of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. The planet WASP-68 bhas a mass of 0.95 ± 0.03 MJup, a radius of 1.24-0.06+0.10 RJup, and orbits a V = 10.7 G0-type star (1.24 ± 0.03 M&sun; 1.69-0.06+0.11 R&sun;, Teff = 5911 ± 60 K) with a period of 5.084298 ± 0.000015 days. Its size is typical of hot Jupiters with similar masses. The planet WASP-73 bis significantly more massive (1.88-0.06+0.07 MJup) and slightly larger (1.16-0.08+0.12 RJup) than Jupiter. It orbits a V = 10.5 F9-type star (1.34-0.04+0.05 M&sun;, 2.07-0.08+0.19 R&sun;, Teff = 6036 ± 120 K) every 4.08722 ± 0.00022 days. Despite its high irradiation (~2.3 × 109 erg s-1 cm-2), WASP-73 b has a high mean density (1.20-0.30+0.26 rhoJup) that suggests an enrichment of the planet in heavy elements. The planet WASP-88 bis a 0.56 ± 0.08 MJuphot Jupiter orbiting a V = 11.4 F6-type star (1.45 ± 0.05 M&sun;, 2.08-0.06+0.12 R&sun;, Teff = 6431 ± 130 K) with a period of 4.954000 ± 0.000019 days. With a radius of 1.70-0.07+0.13 RJup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.5-7.0 Gyr for WASP-68, 2.8-5.7 Gyr for WASP-73 and 1.8-4.3 Gyr for WASP-88. The star WASP-73 appears to be significantly evolved, close to or already in the subgiant phase. The stars WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning. [less ▲]

Detailed reference viewed: 22 (6 ULg)
Full Text
See detailWASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars
Anderson, D. R.; Collier Cameron, A.; Hellier, C. et al

E-print/Working paper (2014)

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R ... [more ▼]

We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 $M_{\rm Jup}$; 1.46 $R_{\rm Jup}$) in a 4.9-day, near-aligned ($\lambda = 8.1 \pm 3.6^\circ$) orbit around CD-24 102 ($V$=10.7; F9). WASP-28b is an inflated, Jupiter-mass planet (0.91 $M_{\rm Jup}$; 1.21 $R_{\rm Jup}$) in a 3.4-day, near-aligned ($\lambda = 8 \pm 18^\circ$) orbit around a $V$=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars ($7^{+2}_{-1}$ Gyr for WASP-20 and $5^{+3}_{-2}$ Gyr for WASP-28; both with $T_{\rm eff}$ < 6250 K), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. [less ▲]

Detailed reference viewed: 19 (0 ULg)
Full Text
Peer Reviewed
See detailHigh-frequency A-type pulsators discovered using SuperWASP
Holdsworth, Daniel L.; Smalley, B.; Gillon, Michaël ULg et al

in Monthly Notices of the Royal Astronomical Society (2014)

We present the results of a survey using the WASP archive to search for high-frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes ... [more ▼]

We present the results of a survey using the WASP archive to search for high-frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes greater than 0.5 millimagnitude. We identify over 350 stars which pulsate with periods less than 30 min. Spectroscopic follow-up of selected targets has enabled us to confirm 10 new rapidly oscillating Ap stars, 13 pulsating Am stars and the fastest known δ Scuti star. We also observe stars which show pulsations in both the high-frequency domain and the low-frequency δ Scuti range. This work shows the power of the WASP photometric survey to find variable stars with amplitudes well below the nominal photometric precision per observation. [less ▲]

Detailed reference viewed: 18 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-103 b: A new planet at the edge of tidal disruption
Gillon, Michaël ULg; Anderson, D. R.; Collier-Cameron, A. et al

in Astronomy and Astrophysics (2014)

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP ... [more ▼]

We report the discovery of WASP-103b, a new ultra-short-period planet (P=22.2 hr) transiting a 12.1 V-magnitude F8-type main-sequence star (1.22+-0.04 Msun, 1.44-0.03+0.05 Rsun, Teff = 6110+-160 K). WASP-103b is significantly more massive (1.49+-0.09 Mjup) and larger (1.53-0.07+0.05 Rjup) than Jupiter. Its large size and extreme irradiation (around 9 10^9 erg/s/cm^2) make it an exquisite target for a thorough atmospheric characterization with existing facilities. Furthermore, its orbital distance is less than 20% larger than its Roche radius, meaning that it might be significantly distorted by tides and might experience mass loss through Roche-lobe overflow. It thus represents a new key object for understanding the last stage of the tidal evolution of hot Jupiters. [less ▲]

Detailed reference viewed: 26 (4 ULg)
Full Text
See detailThree WASP-South transiting exoplanets: WASP-74b, WASP-83b \amp WASP-89b
Hellier, C.; Anderson, D. R.; Collier Cameron, A. et al

E-print/Working paper (2014)

Detailed reference viewed: 15 (5 ULg)
Full Text
See detailSix newly-discovered hot Jupiters transiting F/G stars: WASP-87b, WASP-108b, WASP-109b, WASP-110b, WASP-111b \amp WASP-112b
Anderson, D. R.; Brown, D. J. A.; Collier Cameron, A. et al

E-print/Working paper (2014)

Detailed reference viewed: 12 (4 ULg)
Full Text
Peer Reviewed
See detailEclipsing Am binary systems in the SuperWASP survey
Smalley, B.; Southworth, J.; Pintado, O. I. et al

in Astronomy and Astrophysics (2014), 564

The results of a search for eclipsing Am star binaries using photometry from the SuperWASP survey are presented. The light curves of 1742 Am stars fainter than V = 8.0 were analysed for the presence of ... [more ▼]

The results of a search for eclipsing Am star binaries using photometry from the SuperWASP survey are presented. The light curves of 1742 Am stars fainter than V = 8.0 were analysed for the presence of eclipses. A total of 70 stars were found to exhibit eclipses, with 66 having sufficient observations to enable orbital periods to be determined and 28 of which are newly identified eclipsing systems. Also presented are spectroscopic orbits for 5 of the systems. The number of systems and the period distribution is found to be consistent with that identified in previous radial velocity surveys of "classical" Am stars. [less ▲]

Detailed reference viewed: 6 (0 ULg)
Full Text
Peer Reviewed
See detailWASP-71b: a bloated hot Jupiter in an 2.9-day, prograde orbit around an evolved F8 star
Smith, A. M. S.; Anderson, D. R.; Bouchy, F. et al

in Astronomy and Astrophysics (2013), 552

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b ... [more ▼]

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b, is larger than Jupiter (1.46 +/- 0.13 RJup), but less dense (0.71 +/- 0.16 {\rho}Jup). We also report spectroscopic observations made during transit with the CORALIE spectrograph, which allow us to make a highly-significant detection of the Rossiter-McLaughlin effect. We determine the sky-projected angle between the stellar-spin and planetary-orbit axes to be {\lambda} = 20.1 +/- 9.7 degrees, i.e. the system is 'aligned', according to the widely-used alignment criteria that systems are regarded as misaligned only when {\lambda} is measured to be greater than 10 degrees with 3-{\sigma} confidence. WASP-71, with an effective temperature of 6059 +/- 98 K, therefore fits the previously observed pattern that only stars hotter than 6250 K are host to planets in misaligned orbits. We emphasise, however, that {\lambda} is merely the sky-projected obliquity angle; we are unable to determine whether the stellar-spin and planetary-orbit axes are misaligned along the line-of-sight. With a mass of 1.56 +/- 0.07 Msun, WASP-71 was previously hotter than 6250 K, and therefore might have been significantly misaligned in the past. If so, the planetary orbit has been realigned, presumably through tidal interactions with the cooling star's growing convective zone. [less ▲]

Detailed reference viewed: 27 (6 ULg)
Full Text
Peer Reviewed
See detailDiscovery of WASP-65b and WASP-75b: Two Hot Jupiters Without Highly Inflated Radii
Gómez Maqueo Chew, Y.; Faedi, F.; Pollacco, D. et al

in Astronomy and Astrophysics (2013)

We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ... [more ▼]

We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ~2.311, and ~2.484 days, respectively. The planet host WASP-65 is a G6 star (Teff = 5600 K, [Fe/H] = -0.07 ± 0.07, age ≳8 Gyr); WASP-75 is an F9 star (Teff = 6100 K, [Fe/H] = 0.07 ± 0.09, age ~ 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 MJ (rhopl = 1.13 ± 0.08 rhoJ), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of ~1.5 MJ, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of WASP-75b is slightly inflated (≲10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (rhopl = 0.52 ± 0.06 rhoJ). [less ▲]

Detailed reference viewed: 19 (2 ULg)