References of "Piel, Géraldine"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDevelopment of a quantitative approach using surface-enhanced Raman chemical imaging: First step for the determination of an impurity in a pharmaceutical model
De Bleye, Charlotte ULg; Sacre, Pierre-Yves ULg; Dumont, Elodie ULg et al

in Journal of Pharmaceutical & Biomedical Analysis (2014), 90

This publication reports, for the first time, the development of a quantitative approach using surface-enhanced Raman chemical imaging (SER-CI). A pharmaceutical model presented as tablets based on ... [more ▼]

This publication reports, for the first time, the development of a quantitative approach using surface-enhanced Raman chemical imaging (SER-CI). A pharmaceutical model presented as tablets based on paracetamol, which is the most sold drug around the world, was used to develop this approach. 4-Aminophenol is the main impurity of paracetamol and is actively researched in pharmaceutical formulations because of its toxicity. As its concentration is generally very low (<0.1%, w/w), conventional Raman chemical imaging cannot be used. In this context, a SER-CI method was developed to quantify 4-aminophenol assessing a limit of quantification below its limit of specification of 1000 ppm. Citrate-reduced silver nanoparticles were used as SERS substrate and these nanoparticles were functionalized using 1-butanethiol. Different ways to cover the tablets surface by butanethiol-functionalized silver nanoparticles were tested and a homogeneity study of the silver nanoparticles covering was realized. This homogeneity study was performed in order to choose the best way to cover the surface of tablets by silver colloid. Afterwards, the optimization of the SER-CI approach was necessary and different spectral intensity normalizations were tested. Finally, a quantitative approach using SER-CI was developed enabling to quantify 4-aminophenol from 0.025% to 0.2% in paracetamol tablets. This quantitative approach was tested on two different series of tablets using different batches of silver nanoparticles. [less ▲]

Detailed reference viewed: 28 (16 ULg)
Full Text
Peer Reviewed
See detailQuantitative approaches based on Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Raman Chemical Imaging (SER-CI)
De Bleye, Charlotte ULg; Sacre, Pierre-Yves ULg; Dumont, Elodie ULg et al

Conference (2014, January 20)

Surface-enhanced Raman scattering (SERS), discovered in 1978, is a recent technique enabling to circumvent the main limitations of classical Raman spectroscopy by dramatically exalting the Raman ... [more ▼]

Surface-enhanced Raman scattering (SERS), discovered in 1978, is a recent technique enabling to circumvent the main limitations of classical Raman spectroscopy by dramatically exalting the Raman scattering of the target molecules which are adsorbed or very closed to metallic surfaces while reducing the fluorescence impact on spectra [1]. This technique combines the sensitivity of the fluorescence keeping the structural information of molecules obtained from the SERS spectrum [2]. This last point allows to implement multiplex analyses. Moreover, it is possible to perform Surface-enhanced Raman chemical imaging (SER-CI) analyses which enable to acquire a visual representation of samples combining spectral and spatial measurements. Therefore SERS could become an attractive technique in numerous fields such as pharmaceutical and biomedical research. In this context, the feasibility of developing quantitative approaches using SERS and SER-CI on a pharmaceutical model was studied. The aim was to develop methods allowing the quantification of 4-aminophenol (4-AP) in a pharmaceutical formulation based on paracetamol. 4-AP is the main impurity of paracetamol and is actively research because of its toxicity. This pharmaceutical model was first investigated using SERS and a quantitative method enabling to quantify 4-AP from 3 to15 µg/mL was developed and validated using the standard addition method as a calibration method [3]. From these results, the possibility of developing a quantitative approach using SER-CI was investigated. Tablets based on paracetamol comprising different concentrations of 4-AP were prepared. Different ways to cover the sample surface by the SERS substrate were tested and a homogeneity study was performed to improve the repeatability of SER-CI analyses. Different spectral intensity normalizations were also tested in order to optimize the SER-CI method. Finally, a quantitative approach using SER-CI was developed allowing the quantification of 4-AP from 0.025% to 0.2% (w/w) in paracetamol tablets [4]. This first quantitative approach could pave the way to quantitative analysis of small molecules using SER-CI in complex matrices. References [1] P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Annu. Rev. Anal. Chem. 1 (2008) 601-626. [2] R.F. Aroca, R.A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, J.V. Garcia-Ramos, Adv. Colloid Interface Sci. 116 (2005) 45-61. [3] C. De Bleye, E. Dumont, E. Rozet, P.-Y. Sacré, P.-F. Chavez, L. Netchacovitch, G. Piel, Ph. Hubert, E. Ziemons, Talanta 116 (2013) 899-905. [4] C. De Bleye, P.-Y. Sacré, E. Dumont, L. Netchacovitch, P.-F. Chavez, G. Piel, P. Lebrun, Ph. Hubert, E. Ziemons, J. Pharm. Biomed. Anal. (in Press) [less ▲]

Detailed reference viewed: 55 (3 ULg)
See detailInterest of using lipid vesicular systems for dermatological applications
Piel, Géraldine ULg

Scientific conference (2014)

Detailed reference viewed: 22 (0 ULg)
Full Text
See detailDevelopment of anti-HPV lipoplexes for the treatment of cervical cancer
Lechanteur, Anna ULg; Furst, Tania ULg; Evrard, Brigitte ULg et al

Conference (2013, December 03)

Detailed reference viewed: 6 (1 ULg)
Full Text
Peer Reviewed
See detailDetermination of 4-aminophenol in a pharmaceutical formulation using Surface Enhanced Raman scattering: from development to method validation
De Bleye, Charlotte ULg; Dumont, Elodie ULg; Rozet, Eric ULg et al

in Talanta (2013), 116

A Surface Enhanced Raman Scattering (SERS) method able to quantify 4-aminophenol in a pharmaceutical formulation based on acetaminophen, also called paracetamol, was developed and, for the first time ... [more ▼]

A Surface Enhanced Raman Scattering (SERS) method able to quantify 4-aminophenol in a pharmaceutical formulation based on acetaminophen, also called paracetamol, was developed and, for the first time, successfully validated. In this context, silver nanoparticles were synthesized according to the method described by Lee-Meisel and used as SERS substrate. The repeatability of the silver colloid synthesis was tested using different methods to characterise the size and the zeta potential of silver nanoparticles freshly synthesized. To optimize the SERS samples preparation, a design of experiments implicating concentrations of citrate-reduced silver nanoparticles and aggregating agent was performed in order to maximize the Raman signal enhancement. Finally, an approach based on tolerance intervals and accuracy profiles was applied in order to thoroughly validate the method in a range of concentrations comprised from 3 to 15 µg mL-1 using normalized band intensities. The standard addition method was selected as method calibration. Therefore, measurements were carried out on 4-aminophenol spiked solutions of the pharmaceutical formulation. Despite the well-known stability and reproducibility problems of SERS, the validation was performed using two operators and 5 batches of nanoparticles, one for each validation day. [less ▲]

Detailed reference viewed: 61 (38 ULg)
Full Text
See detailDevelopment of anti-HPV lipoplexes for the treatment of cervical cancer
Lechanteur, Anna ULg; Furst, Tania ULg; Evrard, Brigitte ULg et al

Conference (2013, October 17)

Detailed reference viewed: 7 (1 ULg)
Full Text
Peer Reviewed
See detailDevelopment of a quantitative approach based on surface-enhanced Raman chemical imaging (SER-CI)
De Bleye, Charlotte ULg; Sacre, Pierre-Yves ULg; Dumont, Elodie ULg et al

Conference (2013, October 17)

During the last decade, Raman imaging has taken an important place in the pharmaceutical field [1-2]. It enables to acquire a visual representation of samples while quantifying and identifying molecules ... [more ▼]

During the last decade, Raman imaging has taken an important place in the pharmaceutical field [1-2]. It enables to acquire a visual representation of samples while quantifying and identifying molecules of these samples. However, this technique suffers from a lack of sensitivity and the appearance of fluorescence which can limit its pharmaceutical applications. One way to circumvent these limitations is Surface Enhanced Raman chemical imaging (SER-CI) which presents the advantages of Raman imaging and enables to dramatically increase the Raman scattering of molecules adsorbed or very close to metallic surfaces [3]. The number of publications regarding SER-CI in the pharmaceutical field is very limited probably due to the well-known stability and reproducibility problem of SERS and also due to the difficulty to obtain a homogeneous colloids covering of samples surface before SER-CI analyses. In this context, the possibility to develop a quantitative approach using SER-CI on a pharmaceutical model, presented as paracetamol tablet, was studied. The aim was to develop a SER-CI method enabling to quantify 4-aminophenol (4-AP), which is the main impurity of paracetamol actively research for its toxicity, at a concentration below its limit of specification of 1000 ppm [4]. This pharmaceutical model was first investigated using SERS and a quantitative method enabling to quantify 4-AP from 3 to 15 µg mL-1 was developed and validated [5]. Based on these previous results, the possibility to develop quantitative approach to quantify 4-aminophenol in paracetamol tablet using SER-CI was investigated. Different ways to cover the tablets surface by silver colloids were tested and a homogeneity study was performed in order to improve the repeatability of SER-CI analyses. Afterwards, the SER-CI approach was optimized and different spectral intensity normalizations were tested. Finally, a quantitative approach using SER-CI was developed enabling to quantify 4-AP from 0.025% to 0.2% (w/w) in paracetamol tablets. [less ▲]

Detailed reference viewed: 34 (7 ULg)
Full Text
Peer Reviewed
See detailChemical imaging of small molecules from simple to complex matrices: Quantitative approaches based on Surface Enhanced Raman scattering
De Bleye, Charlotte ULg; Sacre, Pierre-Yves ULg; Chavez, Pierre-François ULg et al

Conference (2013, July)

Surface Enhanced Raman scattering (SERS) allows to dramatically exalt the Raman diffusion of molecules absorbed or very closed to rough metallic surfaces while keeping their structural information. SERS ... [more ▼]

Surface Enhanced Raman scattering (SERS) allows to dramatically exalt the Raman diffusion of molecules absorbed or very closed to rough metallic surfaces while keeping their structural information. SERS chemical imaging, presenting a high specificity and sensibility, allows acquiring a visual representation of samples combining spectral and spatial measurements. This technique could become a powerful tool in pharmaceutical and biological analysis enabling to identify and quantify molecules thanks to chemometric evaluation while looking at their distribution or their interactions. In this context, SERS chemical imaging is investigated in detection or quantitative determination of molecules in pharmaceutical and biological matrices. The feasibility of making quantitative measurements using SERS is evaluated on small target molecules models such as 4-aminophenol and lactate. Firstly, a SERS method to quantify 4-aminophenol which is the primary impurity of acetaminophen coming from its degradation during the storage or from its synthesis was developed on a real pharmaceutical formulation. The standard addition method was selected as calibration method in order to take into account the matrix effect coming from the different components of the latter. Despite the well-known stability and repeatability problems of SERS, the method was thoroughly validated by means of accuracy profiles as decision tool. Moreover, this validation methodology allowed to define a first estimation of the real analytical performance of the technique. Secondly, the detection of lactate, which is a critical metabolite implicated in several metabolic disorders, was successfully tested in the physiological concentration in a simple matrix. Preliminary results for the determination of this metabolic biomarker were also very promising allowing to consider more complex matrices. Based on these results, SERS chemical imaging was implemented to detect 4-aminophenol in a pharmaceutical tablet formerly pulverised by a SERS substrate. Through this imaging technique, it was not only possible to detect the presence of the impurity at the limit of specification of 0.1% (w/w) but it was also possible to differentiate tablets comprising different concentrations of the latter. These promising results represent the first step towards quantitative measurements using SERS chemical imaging. [less ▲]

Detailed reference viewed: 86 (33 ULg)
See detailPOLYMERIC NANOVECTORS: Actual developments and perspectives
Piel, Géraldine ULg

Scientific conference (2013)

Detailed reference viewed: 24 (4 ULg)
Full Text
Peer Reviewed
See detailEvaluation of a new biocompatible poly(N-(morpholino ethyl methacrylate)-based copolymer for the delivery of ruthenium oligonucleotides, targeting HPV16 E6 oncogene
Reschner, Anca ULg; Shim, Yong Ho; Dubois, Philippe et al

in Journal of Biomedical Nanotechnology (2013), 9

This study investigates the use of a new biocompatible block copolymer poly(2-(dimethylamino)ethyl methacrylate-N-(morpholino)ethyl methacrylate (PDMAEMA-b-PMEMA) for the delivery of a particular ... [more ▼]

This study investigates the use of a new biocompatible block copolymer poly(2-(dimethylamino)ethyl methacrylate-N-(morpholino)ethyl methacrylate (PDMAEMA-b-PMEMA) for the delivery of a particular antisense oligonucleotide targeting E6 gene from human papilloma virus. This antisense oligonucleotide was derivatized with a polyazaaromatic RuII complex which, under visible illumination, is able to produce an irreversible crosslink with the complementary targeted sequence. The purpose of this study is to determine whether by the use of a suitable transfection agent, it is possible to increase the efficiency of the antisense oligonucleotide targeting E6 gene, named Ru-P-4. In a recent study, we showed that Oligofectamine® transfected Ru-P-4 antisense oligonucleotide failed to inhibit efficiently the growth of cervical cancer cell line SiHa, contrarily to the Ru-P-6 antisense oligonucleotide, another sequence also targeting the E6 gene. The ability of PDMAEMA-b-PMEMA to form polyplexes with optimal physicochemical characteristics was investigated first. Then the ability of the PDMAEMA-b-PMEMA/Ru-P-4 antisense oligonucleotide polyplexes to transfect two keratinocyte cell lines (SiHa and HaCat) and the capacity of polyplexes to inhibit HPV16 + cervical cancer cell growth was evaluated. PDMAEMA-b-PMEMA base polyplexes at the optimal molar ratio of polymer nitrogen atoms to DNA phosphates (N/P), were able to deliver Ru-P-4 antisense oligonucleotide and to induce a higher growth inhibition in human cervical cancer SiHa cells, compared to other formulations based on Oligofectamine®. [less ▲]

Detailed reference viewed: 86 (24 ULg)
See detailLe double défi de la nanomédecine
Piel, Géraldine ULg; Evrard, Brigitte ULg

Scientific conference (2012, November 29)

Detailed reference viewed: 18 (2 ULg)